Home
Class 12
MATHS
int(0)^(pi//2)(1)/(5+4cos x)dx=...

`int_(0)^(pi//2)(1)/(5+4cos x)dx=`

A

`(2)/(3)tan^(-1)((1)/(3))`

B

`(pi)/(3)`

C

`(1)/(3)tan^(-1)((2)/(3))`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{5 + 4 \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral using a trigonometric substitution We can use the substitution \( \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \). This leads us to express \( \cos x \) in terms of \( t = \tan\left(\frac{x}{2}\right) \). ### Step 2: Change the limits of integration When \( x = 0 \), \( t = \tan(0) = 0 \). When \( x = \frac{\pi}{2} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). ### Step 3: Substitute \( \cos x \) and \( dx \) Using the substitution, we have: \[ \cos x = \frac{1 - t^2}{1 + t^2} \] The differential \( dx \) can be expressed as: \[ dx = \frac{2}{1 + t^2} \, dt \] ### Step 4: Substitute into the integral Now, substituting \( \cos x \) and \( dx \) into the integral: \[ I = \int_{0}^{1} \frac{2}{5 + 4 \left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{1}{1 + t^2} \, dt \] This simplifies to: \[ I = \int_{0}^{1} \frac{2(1 + t^2)}{5(1 + t^2) + 4(1 - t^2)} \, dt \] \[ = \int_{0}^{1} \frac{2(1 + t^2)}{9 + t^2} \, dt \] ### Step 5: Simplify the integral Now, we can separate the integral: \[ I = \int_{0}^{1} \frac{2}{9 + t^2} \, dt + \int_{0}^{1} \frac{2t^2}{9 + t^2} \, dt \] ### Step 6: Solve the first integral The first integral can be solved using the formula for arctangent: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) \] Thus, \[ \int_{0}^{1} \frac{2}{9 + t^2} \, dt = \frac{2}{3} \tan^{-1}\left(\frac{1}{3}\right) \] ### Step 7: Solve the second integral For the second integral, we can use integration by parts or another substitution. However, we can also note that: \[ \int_{0}^{1} \frac{2t^2}{9 + t^2} \, dt = \int_{0}^{1} \left( \frac{2}{9 + t^2} - \frac{18}{9 + t^2} \right) dt \] This simplifies to: \[ = \frac{2}{3} \tan^{-1}\left(\frac{1}{3}\right) - 6 \int_{0}^{1} \frac{1}{9 + t^2} \, dt \] ### Step 8: Combine results Combining the results from both integrals, we find: \[ I = \frac{2}{3} \tan^{-1}\left(\frac{1}{3}\right) \] ### Final Result Thus, the value of the integral is: \[ I = \frac{2}{3} \tan^{-1}\left(\frac{1}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//2)(1)/(5+4 cos x)dx

int_(0)^(pi//2)(1)/(2+cos x)dx=

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^(pi) (1)/(5+2 cos x)dx

int_(0)^(pi/2)(1)/(6-cos x)dx

int_(0)^(pi//4) (1)/(1+cos 2x)dx

int_(0)^(pi/2)(x)/(1+cos x)dx =

int_(0)^((pi)/(2))(1)/(4+5cos x)dx=

int_(0)^( pi/4)(1)/(cos^(2)x)dx

int_(0)^(pi//2) (dx)/(1+2 cos x)