Home
Class 12
MATHS
int(0)^(1)x e^(x)dx=...

`int_(0)^(1)x e^(x)dx=`

A

1

B

`e^(2)`

C

`1+e^(2)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} x e^{x} \, dx \), we will use integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x \) (which implies \( du = dx \)) - \( dv = e^{x} \, dx \) (which implies \( v = e^{x} \)) ### Step 2: Apply the integration by parts formula Using the integration by parts formula, we have: \[ \int x e^{x} \, dx = x e^{x} - \int e^{x} \, dx \] ### Step 3: Integrate \( \int e^{x} \, dx \) The integral of \( e^{x} \) is simply \( e^{x} \): \[ \int e^{x} \, dx = e^{x} \] ### Step 4: Substitute back into the equation Now substituting back into our equation: \[ \int x e^{x} \, dx = x e^{x} - e^{x} + C \] ### Step 5: Evaluate from 0 to 1 Now we need to evaluate this expression from 0 to 1: \[ \left[ x e^{x} - e^{x} \right]_{0}^{1} \] Calculating at the upper limit \( x = 1 \): \[ 1 \cdot e^{1} - e^{1} = e - e = 0 \] Calculating at the lower limit \( x = 0 \): \[ 0 \cdot e^{0} - e^{0} = 0 - 1 = -1 \] ### Step 6: Combine the results Now, we combine the results from the upper and lower limits: \[ \left( 0 \right) - \left( -1 \right) = 0 + 1 = 1 \] Thus, the value of the integral \( \int_{0}^{1} x e^{x} \, dx \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^2e^(2x)dx

int_(-1)^(1)|x|e^(x)dx

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , hten

If int_(0)^(1)(e^(x)dx)/(sqrt(1-x^(2)))=A then int_(0)^( pi)(e^(|sin x|)+e^(|cos x|))dx=

int_(0)^(1)(e^(x)dx)/(1+e^(x))

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

underset is If int_(0)^(oo)e^(-ax)dx=(1)/(a), then int_(0)^(oo)(x^(n))e^(-ax)dx