Home
Class 12
MATHS
int(e )^(e^(2))log x dx =...

`int_(e )^(e^(2))log x dx =`

A

1

B

`e^(2)`

C

`e^(2)-1`

D

`1+e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{e}^{e^2} \log x \, dx \), we can use integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \log x \) (which implies \( du = \frac{1}{x} \, dx \)) - \( dv = dx \) (which implies \( v = x \)) 2. **Apply integration by parts**: Using the integration by parts formula: \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - \int dx \] \[ = x \log x - x + C \] 3. **Evaluate the definite integral from \( e \) to \( e^2 \)**: We need to evaluate: \[ \int_{e}^{e^2} \log x \, dx = \left[ x \log x - x \right]_{e}^{e^2} \] 4. **Calculate the upper limit \( e^2 \)**: \[ \text{At } x = e^2: \quad e^2 \log(e^2) - e^2 = e^2 \cdot 2 - e^2 = 2e^2 - e^2 = e^2 \] 5. **Calculate the lower limit \( e \)**: \[ \text{At } x = e: \quad e \log e - e = e \cdot 1 - e = e - e = 0 \] 6. **Combine the results**: Now, we subtract the lower limit from the upper limit: \[ \int_{e}^{e^2} \log x \, dx = \left( e^2 \right) - \left( 0 \right) = e^2 \] ### Final Answer: \[ \int_{e}^{e^2} \log x \, dx = e^2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2))(log xdx)/((1+log x)^(2))=(e)/(6)(2e-3)

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

int_(1)^(e) log (x) dx=

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx

int_((1)/(e))^(e)|log x|dx=

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then

int e^(-log x)dx=

int e^(x) (e^(log x)+1) dx