Home
Class 12
MATHS
int(1)^(2)x log x dx =...

`int_(1)^(2)x log x dx =`

A

`(3)/(4)-(log 4)`

B

`(log 4)-(3)/(4)`

C

`e^(2)-e`

D

`e+e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{1}^{2} x \log x \, dx \), we will use integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log x \) (which implies \( du = \frac{1}{x} \, dx \)) - \( dv = x \, dx \) (which implies \( v = \frac{x^2}{2} \)) ### Step 2: Apply integration by parts Using the integration by parts formula, we have: \[ \int x \log x \, dx = uv - \int v \, du \] Substituting \( u \), \( du \), \( v \), and \( dv \): \[ \int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx \] This simplifies to: \[ \int x \log x \, dx = \frac{x^2 \log x}{2} - \int \frac{x^2}{2x} \, dx \] \[ = \frac{x^2 \log x}{2} - \int \frac{x}{2} \, dx \] ### Step 3: Solve the remaining integral Now, we can solve the integral \( \int \frac{x}{2} \, dx \): \[ \int \frac{x}{2} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \] ### Step 4: Combine the results Substituting back, we have: \[ \int x \log x \, dx = \frac{x^2 \log x}{2} - \frac{x^2}{4} \] ### Step 5: Evaluate the definite integral from 1 to 2 Now we need to evaluate: \[ \int_{1}^{2} x \log x \, dx = \left[ \frac{x^2 \log x}{2} - \frac{x^2}{4} \right]_{1}^{2} \] Calculating at the upper limit \( x = 2 \): \[ = \frac{2^2 \log 2}{2} - \frac{2^2}{4} = \frac{4 \log 2}{2} - \frac{4}{4} = 2 \log 2 - 1 \] Calculating at the lower limit \( x = 1 \): \[ = \frac{1^2 \log 1}{2} - \frac{1^2}{4} = \frac{0}{2} - \frac{1}{4} = -\frac{1}{4} \] ### Step 6: Combine the results Now, we combine the results from the upper and lower limits: \[ \int_{1}^{2} x \log x \, dx = \left( 2 \log 2 - 1 \right) - \left( -\frac{1}{4} \right) \] \[ = 2 \log 2 - 1 + \frac{1}{4} = 2 \log 2 - \frac{4}{4} + \frac{1}{4} = 2 \log 2 - \frac{3}{4} \] ### Final Result Thus, the value of the definite integral is: \[ \int_{1}^{2} x \log x \, dx = 2 \log 2 - \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int(1)/(2x+x log x)dx

int_(1)^(2)(log x)/(x)dx=

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

Evaluate int_(0)^(1/2)x log(1-x)dx

Evaluate : int(1)/(x^(2)). " log x dx "

int_(1)^(3)(log x)/(x)dx

Integrate : int_(2)^(1)(1)/(x log x)dx

int_(1)^(2)((1+log x))/(x)dx

Evaluate: int_(1)^(2)(log x)/(x^(2))dx

Evaluate: int_(1)^(2)(log x)/(x^(2))dx