Home
Class 12
MATHS
int(0)^(pi/2)(x)/(1+cos x)dx =...

`int_(0)^(pi/2)(x)/(1+cos x)dx =`

A

`pi-(log 2)`

B

`(pi)/(4)-(log 2)`

C

`(pi)/(3)-(log 2)`

D

`(pi)/(2)-(log 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{x}{1 + \cos x} \, dx \), we will follow a step-by-step approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{x}{1 + \cos x} \, dx \] ### Step 2: Use the Identity for Cosine We can use the identity \( \cos x = 1 - 2 \sin^2\left(\frac{x}{2}\right) \) to rewrite \( 1 + \cos x \): \[ 1 + \cos x = 2 - 2 \sin^2\left(\frac{x}{2}\right) = 2 \left(1 - \sin^2\left(\frac{x}{2}\right)\right) = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{x}{2 \cos^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} x \sec^2\left(\frac{x}{2}\right) \, dx \] ### Step 3: Integration by Parts Let \( u = x \) and \( dv = \sec^2\left(\frac{x}{2}\right) \, dx \). Then, we differentiate and integrate: - \( du = dx \) - \( v = 2 \tan\left(\frac{x}{2}\right) \) (since \( \int \sec^2(kx) \, dx = \frac{1}{k} \tan(kx) + C \)) Applying integration by parts: \[ I = \frac{1}{2} \left[ x \cdot 2 \tan\left(\frac{x}{2}\right) \bigg|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} 2 \tan\left(\frac{x}{2}\right) \, dx \right] \] ### Step 4: Evaluate the Boundary Terms Evaluating the boundary term: \[ x \cdot 2 \tan\left(\frac{x}{2}\right) \bigg|_{0}^{\frac{\pi}{2}} = \left(\frac{\pi}{2} \cdot 2 \tan\left(\frac{\pi}{4}\right)\right) - \left(0 \cdot 2 \tan(0)\right) = \frac{\pi}{2} \cdot 2 \cdot 1 - 0 = \pi \] ### Step 5: Evaluate the Remaining Integral Now we need to evaluate: \[ \int_{0}^{\frac{\pi}{2}} 2 \tan\left(\frac{x}{2}\right) \, dx \] Using the substitution \( u = \frac{x}{2} \), \( dx = 2 \, du \): \[ = 2 \int_{0}^{\frac{\pi}{4}} \tan(u) \, 2 \, du = 4 \int_{0}^{\frac{\pi}{4}} \tan(u) \, du \] The integral of \( \tan(u) \) is: \[ \int \tan(u) \, du = -\log(\cos(u)) + C \] Thus, \[ = 4 \left[-\log(\cos(u)) \bigg|_{0}^{\frac{\pi}{4}}\right] = 4 \left[-\log(\cos(\frac{\pi}{4})) + \log(\cos(0))\right] = 4 \left[-\log\left(\frac{1}{\sqrt{2}}\right) + \log(1)\right] = 4 \left[\frac{1}{2} \log(2)\right] = 2 \log(2) \] ### Step 6: Combine Results Now substituting back into our expression for \( I \): \[ I = \frac{1}{2} \left[\pi - 2 \log(2)\right] = \frac{\pi}{2} - \log(2) \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{x}{1 + \cos x} \, dx = \frac{\pi}{2} - \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2)(1)/(6-cos x)dx

int_(0)^(pi//2)(1)/(2+cos x)dx=

int_(0)^(pi//2) (dx)/(1+2 cos x)

int_(0)^(pi//2)(1)/(5+4cos x)dx=

int_(0)^(pi) (1)/(5+2 cos x)dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

The integral int_(0)^(pi/2)(dx)/(1+cos x) is equal to

int_(0)^( pi)(x)/(1+cos^(2)x)dx=

int_(0)^(pi//4) (1)/(1+cos 2x)dx