Home
Class 12
MATHS
int(0)^(1)x tan^(-1)x dx=...

`int_(0)^(1)x tan^(-1)x dx=`

A

`(pi)/(4)-(log 2)`

B

`(pi)/(4)-(1)/(2)`

C

`(pi)/(4)-1`

D

`(pi)/(4)+(log 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} x \tan^{-1}(x) \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will let: - \( u = \tan^{-1}(x) \) (first function) - \( dv = x \, dx \) (second function) 2. **Differentiate and integrate**: Now we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{1+x^2} \, dx \) - \( v = \frac{x^2}{2} \) 3. **Apply the integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Applying this, we have: \[ I = \left[ \tan^{-1}(x) \cdot \frac{x^2}{2} \right]_{0}^{1} - \int_{0}^{1} \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx \] 4. **Evaluate the boundary term**: Now we evaluate the boundary term: \[ \left[ \tan^{-1}(x) \cdot \frac{x^2}{2} \right]_{0}^{1} = \left( \tan^{-1}(1) \cdot \frac{1^2}{2} \right) - \left( \tan^{-1}(0) \cdot \frac{0^2}{2} \right) = \left( \frac{\pi}{4} \cdot \frac{1}{2} \right) - 0 = \frac{\pi}{8} \] 5. **Simplify the remaining integral**: Now we need to simplify the remaining integral: \[ \int_{0}^{1} \frac{x^2}{2(1+x^2)} \, dx \] We can factor out \( \frac{1}{2} \): \[ = \frac{1}{2} \int_{0}^{1} \frac{x^2}{1+x^2} \, dx \] 6. **Simplify the integrand**: We can rewrite \( \frac{x^2}{1+x^2} \): \[ \frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2} \] Thus, \[ \int_{0}^{1} \frac{x^2}{1+x^2} \, dx = \int_{0}^{1} 1 \, dx - \int_{0}^{1} \frac{1}{1+x^2} \, dx \] The first integral evaluates to 1: \[ = 1 - \left[ \tan^{-1}(x) \right]_{0}^{1} = 1 - \left( \frac{\pi}{4} - 0 \right) = 1 - \frac{\pi}{4} \] 7. **Combine results**: Now substituting back: \[ I = \frac{\pi}{8} - \frac{1}{2} \left( 1 - \frac{\pi}{4} \right) = \frac{\pi}{8} - \frac{1}{2} + \frac{\pi}{8} = \frac{2\pi}{8} - \frac{1}{2} = \frac{\pi}{4} - \frac{1}{2} \] 8. **Final result**: Therefore, the final result is: \[ I = \frac{\pi}{4} - \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_(0)^(1)x cos(tan^(-1)x)dx

int_(0)^(1) x^(3) tan^(-1) x " "dx =

Evaluate : (i) int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) int_(0)^(1)x cos(tan^(1)x)dx

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

Evaluate: int_(0)^(1)x(tan^(-1)x)^(2)dx

int_(0)^(1)(tan^(-1)x)/(x)dx=