Home
Class 12
MATHS
int(0)^(1//sqrt(2))(x sin^(-1)x)/(sqrt(1...

`int_(0)^(1//sqrt(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx=`

A

`(pi)/(4)+(2)/(sqrt(2))`

B

`(pi+4)/(4sqrt(2))`

C

`(pi)/(4)-(2)/(sqrt(2))`

D

`(pi)/(4)-(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{1}{\sqrt{2}}} \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx, \] we will use the substitution method and integration by parts. ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \quad \text{and} \quad dx = \cos t \, dt. \] Also, we need to change the limits of integration: - When \( x = 0 \), \( t = \sin^{-1}(0) = 0 \). - When \( x = \frac{1}{\sqrt{2}} \), \( t = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \). Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin t \cdot t}{\sqrt{1 - \sin^2 t}} \cos t \, dt. \] Since \( \sqrt{1 - \sin^2 t} = \cos t \), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{4}} t \sin t \, dt. \] ### Step 2: Integration by Parts Now we will use integration by parts. Let: - \( u = t \) (then \( du = dt \)) - \( dv = \sin t \, dt \) (then \( v = -\cos t \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \left[ -t \cos t \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} -\cos t \, dt. \] ### Step 3: Evaluate the Boundary Terms Now we evaluate the boundary terms: \[ \left[ -t \cos t \right]_{0}^{\frac{\pi}{4}} = -\left(\frac{\pi}{4} \cdot \cos\left(\frac{\pi}{4}\right) - 0 \cdot \cos(0)\right) = -\left(\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4\sqrt{2}}. \] ### Step 4: Evaluate the Remaining Integral Now we compute the remaining integral: \[ \int_{0}^{\frac{\pi}{4}} \cos t \, dt = \left[ \sin t \right]_{0}^{\frac{\pi}{4}} = \sin\left(\frac{\pi}{4}\right) - \sin(0) = \frac{1}{\sqrt{2}} - 0 = \frac{1}{\sqrt{2}}. \] ### Step 5: Combine the Results Putting it all together: \[ I = -\frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}}. \] To combine these, we find a common denominator: \[ I = \frac{-\pi + 4}{4\sqrt{2}}. \] Thus, the final result is: \[ I = \frac{4 - \pi}{4\sqrt{2}}. \] ### Final Answer \[ \int_{0}^{\frac{1}{\sqrt{2}}} \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx = \frac{4 - \pi}{4\sqrt{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int_(0)^((1)/(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int_(0)^(1//sqrt(2))(sin^(-1)x)/((1-x^(2))^(3//2))dx=?

int(dx)/((sin^(-1)x)sqrt(1-x^(2)))

int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

Evaluate the following : int_(0)^(11//sqrt2)(sin^(-1)x)/((1-x^(2))^(3//2))dx.