Home
Class 12
MATHS
int(0)^(pi//4)e^(x)sin x dx =...

`int_(0)^(pi//4)e^(x)sin x dx =`

A

`(e^(pi//4))/(sqrt(2))`

B

`(1)/(2)`

C

`sqrt(2)e^(pi//4)`

D

`e^(pi//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} e^{x} \sin x \, dx \), we will use integration by parts. ### Step 1: Set up integration by parts We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \sin x \) (thus \( du = \cos x \, dx \)) - \( dv = e^{x} \, dx \) (thus \( v = e^{x} \)) ### Step 2: Apply integration by parts Now we apply the integration by parts formula: \[ I = \left[ \sin x \cdot e^{x} \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} e^{x} \cos x \, dx \] ### Step 3: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ \sin x \cdot e^{x} \right]_{0}^{\frac{\pi}{4}} = \sin\left(\frac{\pi}{4}\right) e^{\frac{\pi}{4}} - \sin(0) e^{0} \] Calculating this gives: \[ = \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} - 0 = \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} \] ### Step 4: Set up the new integral Now we have: \[ I = \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} e^{x} \cos x \, dx \] Let’s denote the new integral as \( J = \int_{0}^{\frac{\pi}{4}} e^{x} \cos x \, dx \). ### Step 5: Apply integration by parts to \( J \) We will apply integration by parts again to \( J \): Let: - \( u = \cos x \) (thus \( du = -\sin x \, dx \)) - \( dv = e^{x} \, dx \) (thus \( v = e^{x} \)) Using the integration by parts formula: \[ J = \left[ \cos x \cdot e^{x} \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} e^{x} (-\sin x) \, dx \] This simplifies to: \[ J = \left[ \cos x \cdot e^{x} \right]_{0}^{\frac{\pi}{4}} + \int_{0}^{\frac{\pi}{4}} e^{x} \sin x \, dx \] Evaluating the boundary term: \[ \left[ \cos x \cdot e^{x} \right]_{0}^{\frac{\pi}{4}} = \cos\left(\frac{\pi}{4}\right) e^{\frac{\pi}{4}} - \cos(0) e^{0} = \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} - 1 \] Thus, we have: \[ J = \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} - 1 + I \] ### Step 6: Substitute back into the equation for \( I \) Now we substitute \( J \) back into the equation for \( I \): \[ I = \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} - \left( \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} - 1 + I \right) \] This simplifies to: \[ I = \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} - \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}} + 1 - I \] \[ 2I = 1 \implies I = \frac{1}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} e^{x} \sin x \, dx = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) e^(x) sin 2 x dx=

What is int_(0)^(pi)e^(x) sin x dx equal to ?

solve int_(0)^( pi/2)e^(sin x)dx

int_(0)^(pi//4) sin ^(2) x dx

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

int_(0)^(pi//4)sin^(2)x dx=

int_(0)^( pi/4)(sin x-cos x)dx

int_(0)^(pi//2)sin x.sin 2x dx=

int_(0)^(pi//2) sin ^(4) x dx

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is