Home
Class 12
MATHS
If int(0)^(3)f(x)dx=1 and int(0)^(4)f(y)...

If `int_(0)^(3)f(x)dx=1` and `int_(0)^(4)f(y)dy=2`, then `int_(3)^(4)f(z)dz=`

A

7

B

`-1`

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of definite integrals. ### Step-by-Step Solution: 1. **Given Integrals**: We have the following information: \[ \int_{0}^{3} f(x) \, dx = 1 \] \[ \int_{0}^{4} f(y) \, dy = 2 \] 2. **Understanding the Integral from 3 to 4**: We want to find the value of: \[ \int_{3}^{4} f(z) \, dz \] We can use the property of definite integrals which states: \[ \int_{a}^{b} f(t) \, dt = \int_{a}^{c} f(t) \, dt + \int_{c}^{b} f(t) \, dt \] where \( c \) is a point between \( a \) and \( b \). 3. **Applying the Property**: Here, we can express the integral from 0 to 4 as: \[ \int_{0}^{4} f(y) \, dy = \int_{0}^{3} f(y) \, dy + \int_{3}^{4} f(y) \, dy \] Substituting the known values: \[ 2 = 1 + \int_{3}^{4} f(y) \, dy \] 4. **Solving for the Unknown Integral**: Rearranging the equation gives us: \[ \int_{3}^{4} f(y) \, dy = 2 - 1 = 1 \] 5. **Final Result**: Therefore, the value of the integral \( \int_{3}^{4} f(z) \, dz \) is: \[ \int_{3}^{4} f(z) \, dz = 1 \] ### Summary: The value of \( \int_{3}^{4} f(z) \, dz \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1)f(x)dx=1 and int_(1)^(2)f(y)dy=2 , then int_(0)^(2)f(z)dz=

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4)[3-f(x)]dx=7 , then int_(2)^(-1)f(x)dx=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If int_(-1) ^(4) f(x) dx=4and int_(2)^(4) (3-f(x))dx=7, then int_(-1) ^(2) f(x) dx=

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=