Home
Class 12
MATHS
int(0)^(a)(f(x))/(f(x)+f(a-x))dx=...

`int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=`

A

`(a)/(2)`

B

2a

C

a

D

3a

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(f(x))/(f(x)+f(1-x))dx=

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If int_(0)^(a)(g(x))/(f(x)+f(a-x))dx=0 , then

int_(0)^(a)f(x)dx

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a

int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx. Hence evaluate : int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.

int_(0)^(a)f(x)dx=

Prove that int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a