Home
Class 12
MATHS
int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=...

`int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=`

A

`(a+b)/(2)`

B

`(b-a)/(2)`

C

`a+b`

D

`b-a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{a}^{b} \frac{f(x)}{f(x) + f(a + b - x)} \, dx, \] we can use a property of definite integrals. Let's follow these steps: ### Step 1: Change of Variable We will use the substitution \( x = a + b - t \). Then, when \( x = a \), \( t = b \) and when \( x = b \), \( t = a \). The differential \( dx = -dt \). Thus, we can rewrite the integral as: \[ I = \int_{b}^{a} \frac{f(a + b - t)}{f(a + b - t) + f(t)} (-dt) = \int_{a}^{b} \frac{f(a + b - t)}{f(a + b - t) + f(t)} dt. \] ### Step 2: Rewrite the Integral Now we can express this integral as: \[ I = \int_{a}^{b} \frac{f(a + b - x)}{f(a + b - x) + f(x)} \, dx. \] ### Step 3: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{a}^{b} \frac{f(x)}{f(x) + f(a + b - x)} \, dx \) 2. \( I = \int_{a}^{b} \frac{f(a + b - x)}{f(a + b - x) + f(x)} \, dx \) ### Step 4: Add the Two Integrals Adding both expressions for \( I \): \[ 2I = \int_{a}^{b} \left( \frac{f(x)}{f(x) + f(a + b - x)} + \frac{f(a + b - x)}{f(a + b - x) + f(x)} \right) dx. \] ### Step 5: Simplify the Expression The denominators are the same, so we can combine the fractions: \[ 2I = \int_{a}^{b} \frac{f(x) + f(a + b - x)}{f(x) + f(a + b - x)} \, dx = \int_{a}^{b} 1 \, dx. \] ### Step 6: Evaluate the Integral The integral of 1 from \( a \) to \( b \) is simply: \[ \int_{a}^{b} 1 \, dx = b - a. \] ### Step 7: Solve for \( I \) Thus, we have: \[ 2I = b - a \implies I = \frac{b - a}{2}. \] ### Final Answer The value of the integral is: \[ I = \frac{b - a}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=

If int_(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=10 , then (a, b) can have the values

If int_(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=4 , then (a, b) can have the values

int _(a) ^(b) f (x) dx =

int_(0)^(a) (f(a+x) + f(a-x) ) dx =

Property 4: If f(x) is a comtinuous function on [a;b] then int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

int_(a)^( Prove that: )(f(x))/(f(x)+f(a+b-x))dx=(b-a)/(2)

If a lt b lt c in R and f (a + b +c - x) = f (x) for all, x then int_(a)^(b) (x(f(x) + f(x + c))dx)/(a + b) is:

STATEMENT-1 : int_(0)^(2)[x+[x+[x]]]dx=3 and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx