Home
Class 12
MATHS
int(0)^(pi//2)(1)/(1+sqrt(tan x))dx=...

`int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=`

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} \, dx \), we can use a symmetry property of definite integrals. ### Step-by-Step Solution: 1. **Set up the integral**: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} \, dx \] 2. **Use the substitution**: We can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Here, let \( a = \frac{\pi}{2} \). Thus, we can write: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}} \, dx \] 3. **Simplify the expression**: Using the identity \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\cot x}} \, dx \] Since \( \sqrt{\cot x} = \frac{1}{\sqrt{\tan x}} \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \frac{1}{\sqrt{\tan x}}} \, dx \] 4. **Combine the two integrals**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} \, dx \] and \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + 1} \, dx \] Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \sqrt{\tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + 1} \right) dx \] 5. **Simplify the integrand**: The sum simplifies: \[ \frac{1}{1 + \sqrt{\tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + 1} = \frac{1 + \tan x}{1 + \sqrt{\tan x}} = 1 \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx \] 6. **Evaluate the integral**: \[ 2I = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] 7. **Solve for \( I \)**: \[ I = \frac{\pi}{4} \] ### Final Answer: \[ I = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/((1+sqrt(cotx)))dx=?

int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))=int_(0)^((pi)/(2))(dx)/(1+sqrt(cot x))=(pi)/(4)

int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

Evaluate :int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))

int_(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

int_(0)^((pi)/(2))(1)/(1+tan x)dx

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=