Home
Class 12
MATHS
int(0)^(pi//2) sin 2x log (tan x) dx is ...

` int_(0)^(pi//2) sin 2x log (tan x)` dx is equal to

A

0

B

`log((pi)/(2))`

C

1

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

What is int_(0)^(pi//2) sin 2x ln (cot x) dx equal to ?

int_(0)^(pi//2) sin 2 x (tan x) dx=

int_(0)^(pi//2) sec x log (sec x+tan x) dx is equal to

int_(0)^((pi)/(2))sin2x log tan xdx is equal to

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

int_(0)^(pi//2) (2logsin x - log sin 2x) dx=