Home
Class 12
MATHS
int(0)^(4)(3sqrt(x+5))/(3sqrt(x+5)+3sqrt...

`int_(0)^(4)(3sqrt(x+5))/(3sqrt(x+5)+3sqrt(9-x))dx=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{4} \frac{3\sqrt{x+5}}{3\sqrt{x+5} + 3\sqrt{9-x}} \, dx, \] we can simplify the problem using a symmetry property of definite integrals. ### Step 1: Use the substitution \( x = 4 - t \) Let \( x = 4 - t \). Then, \( dx = -dt \). When \( x = 0 \), \( t = 4 \) and when \( x = 4 \), \( t = 0 \). Thus, the integral becomes: \[ I = \int_{4}^{0} \frac{3\sqrt{(4-t)+5}}{3\sqrt{(4-t)+5} + 3\sqrt{9-(4-t)}} (-dt) = \int_{0}^{4} \frac{3\sqrt{9-t}}{3\sqrt{9-t} + 3\sqrt{t+5}} \, dt. \] ### Step 2: Rewrite the integral Now we have: \[ I = \int_{0}^{4} \frac{3\sqrt{9-t}}{3\sqrt{9-t} + 3\sqrt{t+5}} \, dt. \] ### Step 3: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{4} \frac{3\sqrt{x+5}}{3\sqrt{x+5} + 3\sqrt{9-x}} \, dx \) 2. \( I = \int_{0}^{4} \frac{3\sqrt{9-x}}{3\sqrt{9-x} + 3\sqrt{x+5}} \, dx \) Adding these two integrals: \[ 2I = \int_{0}^{4} \left( \frac{3\sqrt{x+5}}{3\sqrt{x+5} + 3\sqrt{9-x}} + \frac{3\sqrt{9-x}}{3\sqrt{9-x} + 3\sqrt{x+5}} \right) dx. \] ### Step 4: Simplify the expression The sum of the fractions simplifies as follows: \[ \frac{3\sqrt{x+5}}{3\sqrt{x+5} + 3\sqrt{9-x}} + \frac{3\sqrt{9-x}}{3\sqrt{9-x} + 3\sqrt{x+5}} = 1. \] Thus, we have: \[ 2I = \int_{0}^{4} 1 \, dx. \] ### Step 5: Evaluate the integral Now, we can evaluate the integral: \[ \int_{0}^{4} 1 \, dx = [x]_{0}^{4} = 4 - 0 = 4. \] ### Step 6: Solve for \( I \) Therefore, we have: \[ 2I = 4 \implies I = \frac{4}{2} = 2. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)(3^(sqrt(x)))/(sqrt(x))dx

Evaluate ":int_(1)^(4)(sqrt(9-x))/(sqrt(4+x)+sqrt(9-x))dx

int_(0)^(1)(dx)/(3sqrt(x))

The value of int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx is

The value of the integral int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

int_(1)^(4)(sqrt(x))/((sqrt(5-x)+sqrt(x)))dx=(3)/(2)

I=int_(1)^(3)(sqrt(x))/(sqrt(4-x)+sqrt(x))dx=?

int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

Prove that : int_(2)^(7) (sqrt(x))/(sqrt(9-x)+sqrt(x))dx=(5)/(2)

int(dx)/(sqrt(x)sqrt(5-x))