Home
Class 12
MATHS
int(pi//6)^(pi//3)cos^(2)x dx=...

`int_(pi//6)^(pi//3)cos^(2)x dx=`

A

`(pi)/(6)`

B

`(pi)/(12)`

C

`(sqrt(3)-1)/(2)`

D

`(sqrt(3)+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2 x \, dx\), we can use the property of definite integrals which states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] ### Step 1: Set up the integral Let \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2 x \, dx \). ### Step 2: Apply the property of definite integrals Using the property mentioned above, we can rewrite the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2\left(\frac{\pi}{2} - x\right) \, dx \] ### Step 3: Simplify using trigonometric identities We know that: \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x \] Thus, \[ \cos^2\left(\frac{\pi}{2} - x\right) = \sin^2 x \] So we can rewrite the integral as: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 x \, dx \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2 x \, dx \] \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 x \, dx \] Adding these two equations gives: \[ 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\cos^2 x + \sin^2 x\right) \, dx \] ### Step 5: Use the Pythagorean identity Using the identity \(\cos^2 x + \sin^2 x = 1\): \[ 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx \] ### Step 6: Evaluate the integral Now we can evaluate the integral: \[ 2I = \left[x\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} \] Calculating this gives: \[ 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{2\pi}{6} - \frac{\pi}{6} = \frac{\pi}{6} \] ### Step 7: Solve for \( I \) Now, divide both sides by 2: \[ I = \frac{\pi}{6} \cdot \frac{1}{2} = \frac{\pi}{12} \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2 x \, dx = \frac{\pi}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2)cos^(6)x dx=

int_(pi//6)^(pi//2) cos x dx

int_(pi//6)^(pi//3) sin(3x)dx=

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

int_(pi/6)^( pi/3)sin(3x)dx

int_(3pi//2)^(5pi//3) [2cos x]dx=

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

int_(pi//6)^(pi//4)(sec^(2)x+cos^(2)x)dx=