Home
Class 12
MATHS
int(0)^(pi)(cos x)/(1+sqrt(sin x))dx=...

`int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=`

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cos x)/(1-sin^(m)x)dx

The value of int_(0)^( pi/2)(sqrt(cos x))/(sqrt(sin x)+sqrt(cos x))dx

Evaluate the following integral: int_(0)^( pi/2)(sin x)/(sqrt(1+cos x))dx

int_(0)^((pi)/(4)) sqrt(1+sin 2x) dx =

Evaluate :int_(0)^((pi)/(2))sqrt(1+sin x)dx

int _(0) ^(pi//4)cos 2x sqrt(1- sin 2x )dx

int_(0)^(pi//2) sqrt(sin x)/(sqrt(sin x ) + sqrt( cos x)) dx =

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)

Evaluate : int_(pi/3)^( pi/3)(sin x+cos x)/(sqrt(sin2x))dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx