Home
Class 12
MATHS
int(-1)^(1)(x^(2)+x)/(x^(2)+1)dx=...

`int_(-1)^(1)(x^(2)+x)/(x^(2)+1)dx=`

A

`2-(pi)/(2)`

B

`(pi)/(2)+2`

C

`(pi)/(2)-2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ \int_{-1}^{1} \frac{x^2 + x}{x^2 + 1} \, dx, \] we can break it down into simpler parts. ### Step 1: Split the Integral We can separate the integral into two parts: \[ \int_{-1}^{1} \frac{x^2 + x}{x^2 + 1} \, dx = \int_{-1}^{1} \frac{x^2}{x^2 + 1} \, dx + \int_{-1}^{1} \frac{x}{x^2 + 1} \, dx. \] ### Step 2: Evaluate the First Integral Now, we evaluate the first integral: \[ \int_{-1}^{1} \frac{x^2}{x^2 + 1} \, dx. \] This can be simplified as: \[ \int_{-1}^{1} \left( 1 - \frac{1}{x^2 + 1} \right) \, dx = \int_{-1}^{1} 1 \, dx - \int_{-1}^{1} \frac{1}{x^2 + 1} \, dx. \] Calculating the first part: \[ \int_{-1}^{1} 1 \, dx = [x]_{-1}^{1} = 1 - (-1) = 2. \] ### Step 3: Evaluate the Second Integral Now, we need to evaluate the second integral: \[ \int_{-1}^{1} \frac{1}{x^2 + 1} \, dx. \] This integral is known and can be computed as: \[ \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x). \] Thus, \[ \int_{-1}^{1} \frac{1}{x^2 + 1} \, dx = \left[ \tan^{-1}(x) \right]_{-1}^{1} = \tan^{-1}(1) - \tan^{-1}(-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}. \] ### Step 4: Combine the Results Now, we can combine the results from Step 2 and Step 3: \[ \int_{-1}^{1} \frac{x^2}{x^2 + 1} \, dx = 2 - \frac{\pi}{2}. \] ### Step 5: Evaluate the Second Integral (Odd Function) Next, we evaluate the second integral: \[ \int_{-1}^{1} \frac{x}{x^2 + 1} \, dx. \] Since \(\frac{x}{x^2 + 1}\) is an odd function, the integral over a symmetric interval around zero is zero: \[ \int_{-1}^{1} \frac{x}{x^2 + 1} \, dx = 0. \] ### Final Result Combining everything, we have: \[ \int_{-1}^{1} \frac{x^2 + x}{x^2 + 1} \, dx = \left(2 - \frac{\pi}{2}\right) + 0 = 2 - \frac{\pi}{2}. \] Thus, the final answer is: \[ \int_{-1}^{1} \frac{x^2 + x}{x^2 + 1} \, dx = 2 - \frac{\pi}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)(x^(2)-1)/(x^(2)+1)dx=

int_(-1)^(1)(x^(2))/(1+x^(2))dx=

Evaluate : int_(-1)^(1)(x^(2))/(1+x^(2))dx

int_(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

int_(-1) ^(1) x^(2) /(1+x^(2)) dx =

int_(0)^(1)(2-x^(2))/(1+x^(2))dx=

The value of int_(-1)^(1)((x^(2)+sin x)/(1+x^(2)))dx is equal to

int_(-1)^(1)(1-x^(2))/(1+x^(2))dx is

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx