Home
Class 12
MATHS
int(0)^(pi)x sin^(2)x dx=...

`int_(0)^(pi)x sin^(2)x dx=`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`(pi^(2))/(4)`

D

`(pi^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \sin^2 x \, dx \), we can use the property of definite integrals and symmetry. ### Step 1: Define the Integral Let \( I = \int_{0}^{\pi} x \sin^2 x \, dx \). ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals: \[ I = \int_{0}^{\pi} (\pi - x) \sin^2 x \, dx \] This is because if we substitute \( x \) with \( \pi - x \), the limits remain the same. ### Step 3: Rewrite the Integral Now, we can rewrite the integral: \[ I = \int_{0}^{\pi} (\pi - x) \sin^2 x \, dx = \int_{0}^{\pi} \pi \sin^2 x \, dx - \int_{0}^{\pi} x \sin^2 x \, dx \] This gives us: \[ I = \pi \int_{0}^{\pi} \sin^2 x \, dx - I \] ### Step 4: Solve for \( I \) Now, we can add \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} \sin^2 x \, dx \] Thus, \[ I = \frac{\pi}{2} \int_{0}^{\pi} \sin^2 x \, dx \] ### Step 5: Evaluate \( \int_{0}^{\pi} \sin^2 x \, dx \) To evaluate \( \int_{0}^{\pi} \sin^2 x \, dx \), we can use the identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] Thus, \[ \int_{0}^{\pi} \sin^2 x \, dx = \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} \, dx \] This simplifies to: \[ = \frac{1}{2} \left( \int_{0}^{\pi} 1 \, dx - \int_{0}^{\pi} \cos(2x) \, dx \right) \] ### Step 6: Calculate Each Integral The first integral is straightforward: \[ \int_{0}^{\pi} 1 \, dx = \pi \] The second integral can be evaluated as: \[ \int_{0}^{\pi} \cos(2x) \, dx = \left[ \frac{\sin(2x)}{2} \right]_{0}^{\pi} = \frac{\sin(2\pi) - \sin(0)}{2} = 0 \] Thus, \[ \int_{0}^{\pi} \sin^2 x \, dx = \frac{1}{2} \left( \pi - 0 \right) = \frac{\pi}{2} \] ### Step 7: Substitute Back to Find \( I \) Now substituting back: \[ I = \frac{\pi}{2} \cdot \frac{\pi}{2} = \frac{\pi^2}{4} \] ### Final Answer Thus, the final value of the integral is: \[ \int_{0}^{\pi} x \sin^2 x \, dx = \frac{\pi^2}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)x sin x dx=

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

Prove that : int_(0)^(pi) sin^(2) x . cos x dx =0

int_(0)^(pi//2) sin ^(2) x cos^(3) x" "dx =

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

Evaluate the following : int_(0)^(pi//2)x sin x dx