Home
Class 12
MATHS
int(0)^(7)(1)/(sqrt(4+3x))dx=...

`int_(0)^(7)(1)/(sqrt(4+3x))dx=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{0}^{7} \frac{1}{\sqrt{4 + 3x}} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = 4 + 3x \). Then, we differentiate both sides to find \( dx \): \[ dt = 3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3} \] ### Step 2: Change the limits of integration Now, we need to change the limits of integration according to our substitution: - When \( x = 0 \): \[ t = 4 + 3(0) = 4 \] - When \( x = 7 \): \[ t = 4 + 3(7) = 4 + 21 = 25 \] So, the new limits of integration are from \( t = 4 \) to \( t = 25 \). ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ \int_{0}^{7} \frac{1}{\sqrt{4 + 3x}} \, dx = \int_{4}^{25} \frac{1}{\sqrt{t}} \cdot \frac{dt}{3} = \frac{1}{3} \int_{4}^{25} t^{-1/2} \, dt \] ### Step 4: Integrate Now we can integrate \( t^{-1/2} \): \[ \int t^{-1/2} \, dt = 2t^{1/2} + C \] Thus, \[ \frac{1}{3} \int_{4}^{25} t^{-1/2} \, dt = \frac{1}{3} \left[ 2t^{1/2} \right]_{4}^{25} \] ### Step 5: Evaluate the definite integral Now we evaluate the integral at the limits: \[ = \frac{1}{3} \left[ 2(25^{1/2}) - 2(4^{1/2}) \right] = \frac{1}{3} \left[ 2(5) - 2(2) \right] = \frac{1}{3} \left[ 10 - 4 \right] = \frac{1}{3} \cdot 6 = 2 \] ### Final Answer Thus, the value of the integral \( \int_{0}^{7} \frac{1}{\sqrt{4 + 3x}} \, dx \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1)/(sqrt(3x+2))dx

int_(0)^(1)(1)/(sqrt(x+3))dx =

int_(0)^(4)(dx)/(sqrt(4-x))

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(4)(dx)/(x+sqrt(x))

Evaluate :int_(0)^(1)(1)/(sqrt(2x+3))dx

Evaluate: int_(0)^(4)(1)/(x+sqrt(x))dx( ii) int_(0)^(1)(2x)/(5x^(2)+1)dx

int_(0)^(1)(dx)/(sqrt(5x+3))=?

int(1)/(sqrt(3-4x))dx

int(1)/(sqrt(4x+3))dx