Home
Class 12
MATHS
int(1)^(2)(1)/(x sqrt(x^(2)-1))dx=...

`int_(1)^(2)(1)/(x sqrt(x^(2)-1))dx=`

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{2} \frac{1}{x \sqrt{x^2 - 1}} \, dx \), we will follow these steps: ### Step 1: Identify the Integral We start with the integral: \[ I = \int_{1}^{2} \frac{1}{x \sqrt{x^2 - 1}} \, dx \] ### Step 2: Use a Known Integral Formula We recognize that the integral can be solved using the formula: \[ \int \frac{1}{x \sqrt{x^2 - 1}} \, dx = \sec^{-1}(x) + C \] Thus, we can rewrite our integral as: \[ I = \left[ \sec^{-1}(x) \right]_{1}^{2} \] ### Step 3: Evaluate the Integral at the Limits Next, we evaluate the integral at the upper and lower limits: \[ I = \sec^{-1}(2) - \sec^{-1}(1) \] ### Step 4: Calculate the Values of the Inverse Secant We know that: - \(\sec^{-1}(2) = \frac{\pi}{3}\) (since \(\sec(\frac{\pi}{3}) = 2\)) - \(\sec^{-1}(1) = 0\) (since \(\sec(0) = 1\)) Substituting these values back into our expression for \(I\): \[ I = \frac{\pi}{3} - 0 = \frac{\pi}{3} \] ### Step 5: Conclusion Thus, the value of the definite integral is: \[ I = \frac{\pi}{3} \] ### Final Answer The answer is: \[ \frac{\pi}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(1/2)^(1)(1)/(sqrt(1-x^(2)))dx=

int_(0)^(1)(dx)/(x sqrt(x^(2)-1)) =

int_(-1)^(1)(1)/(sqrt(1-x^(2)))dx =

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int_(1)^(2)(dx)/((x+1)sqrt(x^(2)-1))

int_(1)^(2)(1)/(x sqrt(log x))dx =

int_(0)^(1)(dx)/(sqrt(x^(2)-x+1))

int_(0)^(1)(dx)/(sqrt(x^(2)-x+1))

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?