Home
Class 12
MATHS
int(0)^(1)(1)/(e^(x)+e^(-x))dx=...

`int_(0)^(1)(1)/(e^(x)+e^(-x))dx=`

A

`tan^(-1)e-(pi)/(4)`

B

`tan^(-1)e+(pi)/(4)`

C

`tan^(-1)e`

D

`(pi)/(4)-tan^(-1)e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} \frac{1}{e^{x} + e^{-x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand The integrand can be rewritten using the property of exponents: \[ \frac{1}{e^{x} + e^{-x}} = \frac{1}{\frac{e^{2x} + 1}{e^{x}}} = \frac{e^{x}}{e^{2x} + 1} \] Thus, we can rewrite the integral as: \[ \int_{0}^{1} \frac{e^{x}}{e^{2x} + 1} \, dx \] ### Step 2: Substitution Let \( t = e^{x} \). Then, the differential \( dt = e^{x} \, dx \) or \( dx = \frac{dt}{t} \). Next, we need to change the limits of integration: - When \( x = 0 \), \( t = e^{0} = 1 \) - When \( x = 1 \), \( t = e^{1} = e \) Now, substituting these into the integral, we get: \[ \int_{1}^{e} \frac{1}{t^{2} + 1} \, dt \] ### Step 3: Evaluate the integral The integral \( \int \frac{1}{t^{2} + 1} \, dt \) is a standard integral that evaluates to \( \tan^{-1}(t) \). Therefore, we have: \[ \int_{1}^{e} \frac{1}{t^{2} + 1} \, dt = \tan^{-1}(t) \Big|_{1}^{e} \] Calculating this gives: \[ \tan^{-1}(e) - \tan^{-1}(1) \] ### Step 4: Substitute values We know that \( \tan^{-1}(1) = \frac{\pi}{4} \). Thus, the result becomes: \[ \tan^{-1}(e) - \frac{\pi}{4} \] ### Final Result The final answer to the integral is: \[ \int_{0}^{1} \frac{1}{e^{x} + e^{-x}} \, dx = \tan^{-1}(e) - \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (dx)/(e^(x)+e^(-x))

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(-1)^(1)(e^(x)-e^(-x))dx=

int_(0)^(1)e^(e^(x))(1+xe^(x))dx

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))