Home
Class 12
MATHS
int(0)^(4)sqrt(16-x^(2))dx=...

`int_(0)^(4)sqrt(16-x^(2))dx=`

A

`-4pi`

B

`2pi`

C

`4pi`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{4} \sqrt{16 - x^2} \, dx \), we can use a known formula for the integral of the form \( \int \sqrt{a^2 - x^2} \, dx \). ### Step 1: Identify the integral form The integral can be recognized as a specific case of the formula: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left( \frac{x}{a} \right) + C \] where \( a = 4 \) in our case, since \( 16 = 4^2 \). ### Step 2: Apply the formula Using the formula, we have: \[ \int \sqrt{16 - x^2} \, dx = \frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \left( \frac{x}{4} \right) + C \] This simplifies to: \[ \int \sqrt{16 - x^2} \, dx = \frac{x}{2} \sqrt{16 - x^2} + 8 \sin^{-1} \left( \frac{x}{4} \right) + C \] ### Step 3: Evaluate the definite integral from 0 to 4 Now we need to evaluate this from 0 to 4: \[ \int_{0}^{4} \sqrt{16 - x^2} \, dx = \left[ \frac{x}{2} \sqrt{16 - x^2} + 8 \sin^{-1} \left( \frac{x}{4} \right) \right]_{0}^{4} \] ### Step 4: Calculate the upper limit (x = 4) Substituting \( x = 4 \): \[ = \frac{4}{2} \sqrt{16 - 4^2} + 8 \sin^{-1} \left( \frac{4}{4} \right) \] \[ = 2 \cdot \sqrt{16 - 16} + 8 \cdot \sin^{-1}(1) \] \[ = 2 \cdot 0 + 8 \cdot \frac{\pi}{2} = 4\pi \] ### Step 5: Calculate the lower limit (x = 0) Now substituting \( x = 0 \): \[ = \frac{0}{2} \sqrt{16 - 0^2} + 8 \sin^{-1} \left( \frac{0}{4} \right) \] \[ = 0 + 8 \cdot 0 = 0 \] ### Step 6: Combine results Now, combining the results from the upper and lower limits: \[ \int_{0}^{4} \sqrt{16 - x^2} \, dx = 4\pi - 0 = 4\pi \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{4} \sqrt{16 - x^2} \, dx = 4\pi \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^(2)sqrt(4-x^(2))dx

I=int_(0)^(2)x sqrt(4-x^(2))dx

int(sqrt(16-x^(2)))dx

int_(0)^(2//3)sqrt(4-9x^(2))dx=

int_(0)^(a)sqrt(a^(2)-x^(2))dx=

int_(2)^(4)sqrt(x)dx

int(dx)/(sqrt(16-x^(2)))

Evaluate each of the following integral: int_0^4 1/(sqrt(16-x^2))dx

int_(0)^(2)x^(2)sqrt(4-x^(2))dx=

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to