Home
Class 12
MATHS
int(0)^(2//3)sqrt(4-9x^(2))dx=...

`int_(0)^(2//3)sqrt(4-9x^(2))dx=`

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(3)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{0}^{\frac{2}{3}} \sqrt{4 - 9x^2} \, dx \), we can follow these steps: ### Step 1: Factor out the constant We start by factoring out the constant from the square root: \[ \int_{0}^{\frac{2}{3}} \sqrt{4 - 9x^2} \, dx = \int_{0}^{\frac{2}{3}} \sqrt{9\left(\frac{4}{9} - x^2\right)} \, dx \] This simplifies to: \[ = \int_{0}^{\frac{2}{3}} 3\sqrt{\frac{4}{9} - x^2} \, dx \] ### Step 2: Factor out the constant from the integral Now we can factor out the constant \(3\): \[ = 3 \int_{0}^{\frac{2}{3}} \sqrt{\frac{4}{9} - x^2} \, dx \] ### Step 3: Use the substitution Next, we can use the property of integrals. We recognize that this integral resembles the form \( \int \sqrt{a^2 - x^2} \, dx \). Here, \( a = \frac{2}{3} \): \[ = 3 \left[ \frac{x}{2} \sqrt{\frac{4}{9} - x^2} + \frac{4}{9} \cdot \frac{1}{2} \sin^{-1}\left(\frac{3x}{2}\right) \right]_{0}^{\frac{2}{3}} \] ### Step 4: Evaluate the first part Now we evaluate the first part of the integral at the limits: \[ = 3 \left[ \frac{\frac{2}{3}}{2} \sqrt{\frac{4}{9} - \left(\frac{2}{3}\right)^2} - 0 \right] \] Calculating this gives: \[ = 3 \left[ \frac{1}{3} \sqrt{\frac{4}{9} - \frac{4}{9}} \right] = 3 \left[ \frac{1}{3} \cdot 0 \right] = 0 \] ### Step 5: Evaluate the second part Now we evaluate the second part: \[ = 3 \left[ 0 + \frac{4}{9} \cdot \frac{1}{2} \sin^{-1}\left(1\right) - 0 \right] \] Since \( \sin^{-1}(1) = \frac{\pi}{2} \): \[ = 3 \left[ \frac{4}{9} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \right] = 3 \cdot \frac{4\pi}{36} = \frac{4\pi}{12} = \frac{\pi}{3} \] ### Final Result Thus, the value of the definite integral is: \[ \int_{0}^{\frac{2}{3}} \sqrt{4 - 9x^2} \, dx = \frac{\pi}{9} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

I=int_(0)^(2)x sqrt(4-x^(2))dx

Evaluate :int_(0)^(2)sqrt(4-x^(2))dx

int_(0)^(2)x^(2)sqrt(4-x^(2))dx=

int_(-2)^(2)(x-3)sqrt(4-x^(2))dx

int sqrt(4-9x^(2))dx

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to

int_(0)^(3)5sqrt(1-(x^(2))/(9))dx

int_(0)^(2)(dx)/(sqrt(4-x^(2)) =?

int_(sqrt(2)//3)^(sqrt(3)//3)(1)/(sqrt(4-9x^(2)))dx=

int sqrt(1-9x^(2))dx=?