Home
Class 12
MATHS
int(0)^(a)(a+x)/(sqrt(a-x))dx=...

`int_(0)^(a)(a+x)/(sqrt(a-x))dx=`

A

`(a sqrt(a))/(3)`

B

`(5a sqrt(a))/(3)`

C

`(4a sqrt(a))/(3)`

D

`(10a sqrt(a))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{a} \frac{a+x}{\sqrt{a-x}} \, dx \), we can use the property of definite integrals. Let's go through the solution step by step. ### Step 1: Define the Integral Let \[ I = \int_{0}^{a} \frac{a+x}{\sqrt{a-x}} \, dx \] ### Step 2: Use the Property of Definite Integrals According to the property of definite integrals, we can express: \[ I = \int_{0}^{a} \frac{a + (a - x)}{\sqrt{a - (a - x)}} \, dx \] This simplifies to: \[ I = \int_{0}^{a} \frac{2a - x}{\sqrt{x}} \, dx \] ### Step 3: Rewrite the Integral Now we can rewrite \( I \) as: \[ I = \int_{0}^{a} \frac{2a}{\sqrt{x}} \, dx - \int_{0}^{a} \frac{x}{\sqrt{x}} \, dx \] This simplifies to: \[ I = 2a \int_{0}^{a} x^{-1/2} \, dx - \int_{0}^{a} x^{1/2} \, dx \] ### Step 4: Evaluate the Integrals Now we will evaluate each integral separately. 1. **First Integral**: \[ \int_{0}^{a} x^{-1/2} \, dx = \left[ 2x^{1/2} \right]_{0}^{a} = 2\sqrt{a} - 0 = 2\sqrt{a} \] 2. **Second Integral**: \[ \int_{0}^{a} x^{1/2} \, dx = \left[ \frac{2}{3} x^{3/2} \right]_{0}^{a} = \frac{2}{3} a^{3/2} - 0 = \frac{2}{3} a^{3/2} \] ### Step 5: Substitute Back Now substituting back into our expression for \( I \): \[ I = 2a(2\sqrt{a}) - \frac{2}{3} a^{3/2} \] This simplifies to: \[ I = 4a\sqrt{a} - \frac{2}{3} a^{3/2} \] ### Step 6: Combine the Terms To combine the terms, we can express \( 4a\sqrt{a} \) as \( \frac{12}{3} a^{3/2} \): \[ I = \frac{12}{3} a^{3/2} - \frac{2}{3} a^{3/2} = \frac{10}{3} a^{3/2} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{10}{3} a^{3/2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

int_(0)^(1)(x)/(1+sqrt(x))dx

int_(0)^(a)sqrt((a+x)/(a-x))dx=

int_(0)^(16)(16+x)/(sqrt(16-x))dx=

int_(0)^(1)(1)/(x+sqrt(x))dx=

Let I=int_(0)^(1) (sin x)/(sqrt(x))dx and I=int_(0)^(1) (cos x)/(sqrt(x))int dx . Then, which one of the following is true?

int_(0)^(a)x^(3/2)sqrt(a-x)dx

int_(0)^(2)(x^(2))/(sqrt(2)-x)dx

int_(0)^(2)(x^(2))/(sqrt(2)-x)dx

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx