Home
Class 12
MATHS
int0^(pi/2)(x/(sinx))^2dx=...

`int_0^(pi/2)(x/(sinx))^2dx=`

A

log 2

B

`-pi log 2`

C

`pi log 3`

D

log 3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If the value of int_0^pi(x/(1+sinx))^2dx=lambda , then find the value of the integral =int_0^pi[(2x^2*cos^2(x/2))/(1+sinx)^2]dx

int_0^(pi/2) cosx/(1+sinx)dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate int_0^(pi/2) x/(sinx+cosx)dx

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

int_(0)^(pi//2)e^(x)sinx dx=

int_(0)^(pi)(x)/(1+sinx)dx .

Evaluate : int_0^(pi/2) x sinx dx

Evaluate the following integral: int_0^(pi//2)x^2sinx\ dx