Home
Class 12
MATHS
int(0)^(2)x^(2)sqrt(4-x^(2))dx=...

`int_(0)^(2)x^(2)sqrt(4-x^(2))dx=`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`(pi)/(16)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} x^{2} \sqrt{4 - x^{2}} \, dx \), we will use the substitution method. Here are the steps: ### Step 1: Substitution Let \( x = 2 \sin \theta \). Then, \( dx = 2 \cos \theta \, d\theta \). ### Step 2: Change the limits of integration When \( x = 0 \): \[ 0 = 2 \sin \theta \implies \sin \theta = 0 \implies \theta = 0 \] When \( x = 2 \): \[ 2 = 2 \sin \theta \implies \sin \theta = 1 \implies \theta = \frac{\pi}{2} \] So, the limits change from \( x = 0 \) to \( x = 2 \) to \( \theta = 0 \) to \( \theta = \frac{\pi}{2} \). ### Step 3: Substitute in the integral Now, substituting \( x \) and \( dx \) into the integral: \[ \int_{0}^{2} x^{2} \sqrt{4 - x^{2}} \, dx = \int_{0}^{\frac{\pi}{2}} (2 \sin \theta)^{2} \sqrt{4 - (2 \sin \theta)^{2}} (2 \cos \theta) \, d\theta \] This simplifies to: \[ = \int_{0}^{\frac{\pi}{2}} 4 \sin^{2} \theta \sqrt{4 - 4 \sin^{2} \theta} (2 \cos \theta) \, d\theta \] \[ = \int_{0}^{\frac{\pi}{2}} 4 \sin^{2} \theta \sqrt{4(1 - \sin^{2} \theta)} (2 \cos \theta) \, d\theta \] \[ = \int_{0}^{\frac{\pi}{2}} 4 \sin^{2} \theta \cdot 2 \sqrt{4} \cos \theta \, d\theta \] \[ = \int_{0}^{\frac{\pi}{2}} 16 \sin^{2} \theta \cos \theta \, d\theta \] ### Step 4: Simplify the integral Now we can factor out constants: \[ = 16 \int_{0}^{\frac{\pi}{2}} \sin^{2} \theta \cos \theta \, d\theta \] ### Step 5: Use the identity for sine Using the identity \( \sin^{2} \theta = \frac{1 - \cos(2\theta)}{2} \): \[ = 16 \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos(2\theta)}{2} \cos \theta \, d\theta \] \[ = 8 \int_{0}^{\frac{\pi}{2}} (1 - \cos(2\theta)) \cos \theta \, d\theta \] \[ = 8 \left( \int_{0}^{\frac{\pi}{2}} \cos \theta \, d\theta - \int_{0}^{\frac{\pi}{2}} \cos(2\theta) \cos \theta \, d\theta \right) \] ### Step 6: Evaluate the integrals The first integral: \[ \int_{0}^{\frac{\pi}{2}} \cos \theta \, d\theta = [\sin \theta]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1 \] The second integral can be computed using the product-to-sum formulas: \[ \int_{0}^{\frac{\pi}{2}} \cos(2\theta) \cos \theta \, d\theta = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{2}} \cos(\theta) \, d\theta + \int_{0}^{\frac{\pi}{2}} \cos(3\theta) \, d\theta \right) \] The first part evaluates to \( 1 \) and the second part evaluates to \( 0 \) (as \( \sin(3\theta) \) evaluated at the limits gives \( 0 \)): \[ = \frac{1}{2}(1 + 0) = \frac{1}{2} \] ### Step 7: Combine results Thus, we have: \[ = 8 \left( 1 - \frac{1}{2} \right) = 8 \cdot \frac{1}{2} = 4 \] ### Final Answer The value of the integral is: \[ \int_{0}^{2} x^{2} \sqrt{4 - x^{2}} \, dx = 4 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

I=int_(0)^(2)x sqrt(4-x^(2))dx

Evaluate :int_(0)^(2)sqrt(4-x^(2))dx

int_(0)^(2)x^(2)sqrt(2-x)dx

int_(0)^(2//3)sqrt(4-9x^(2))dx=

int_(-2)^(2)(x-3)sqrt(4-x^(2))dx

int_(0)^(2)(dx)/(sqrt(4-x^(2)) =?

int_(0)^(2)(x^(2))/(sqrt(2)-x)dx

int_(0)^(2)(x^(2))/(sqrt(2)-x)dx

int_(0)^(1)(x-5)sqrt(x^(2)+x)dx