Home
Class 12
MATHS
int(0)^(pi//2)sin^(3)x dx=...

`int_(0)^(pi//2)sin^(3)x dx=`

A

`(2)/(3)`

B

`(3)/(2)`

C

`-(2)/(3)`

D

`-(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( \sin^3 x \) as \( \sin^2 x \cdot \sin x \). Thus, we rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cdot \sin x \, dx \] ### Step 2: Use the Pythagorean Identity Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can substitute: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \cdot \sin x \, dx = \int_{0}^{\frac{\pi}{2}} (1 - \cos^2 x) \sin x \, dx \] ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ \int_{0}^{\frac{\pi}{2}} (1 - \cos^2 x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx - \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin x \, dx \] ### Step 4: Evaluate the First Integral The first integral \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \) can be evaluated directly: \[ \int \sin x \, dx = -\cos x \quad \text{so} \quad \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] ### Step 5: Evaluate the Second Integral For the second integral \( \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin x \, dx \), we can use substitution. Let \( t = \cos x \), then \( dt = -\sin x \, dx \). Changing the limits: - When \( x = 0 \), \( t = \cos(0) = 1 \) - When \( x = \frac{\pi}{2} \), \( t = \cos\left(\frac{\pi}{2}\right) = 0 \) Thus, we have: \[ \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin x \, dx = -\int_{1}^{0} t^2 \, dt = \int_{0}^{1} t^2 \, dt \] Now, we can evaluate this integral: \[ \int t^2 \, dt = \frac{t^3}{3} \quad \text{so} \quad \int_{0}^{1} t^2 \, dt = \left[\frac{t^3}{3}\right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \] ### Step 6: Combine the Results Now we can combine the results from the two integrals: \[ \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx = 1 - \frac{1}{3} = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \] Thus, the final result is: \[ \int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx = \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/4) sin^(3) x dx=(2)/(3)

Evaluate the following : int_(0)^(pi)x sin^(3)x dx

int_(0)^(pi//2) sin ^(3) x cos^(3) x" "dx =

int_(0)^(pi//2)sin^(3)x cos^(4)x dx=

Evaluate : int_(0)^(pi//2) sin^(3) c cos x dx

int_(0)^(pi//2) sin ^(2) x cos^(3) x" "dx =

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

int_(0)^(pi//2)sin^(4)x cos^(3)x dx =

int_(0)^(pi//2)(sin^(3//2)x)/((sin^(3//2)x+cos^(3//2)x))dx=(pi)/(4)