Home
Class 12
MATHS
int(0)^(pi//2)sin^(5)x dx=...

`int_(0)^(pi//2)sin^(5)x dx=`

A

`(15)/(8)`

B

`(8)/(15)`

C

`(8pi)/(15)`

D

`(15pi)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sin^5 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting \( \sin^5 x \) in a more manageable form: \[ \sin^5 x = \sin^4 x \cdot \sin x \] Thus, we can express the integral as: \[ \int_{0}^{\frac{\pi}{2}} \sin^5 x \, dx = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cdot \sin x \, dx \] ### Step 2: Use the identity for \( \sin^2 x \) We know that \( \sin^2 x = 1 - \cos^2 x \). Therefore, we can write: \[ \sin^4 x = (\sin^2 x)^2 = (1 - \cos^2 x)^2 \] Expanding this gives: \[ \sin^4 x = 1 - 2\cos^2 x + \cos^4 x \] Now, substituting this back into the integral, we have: \[ \int_{0}^{\frac{\pi}{2}} \sin^5 x \, dx = \int_{0}^{\frac{\pi}{2}} (1 - 2\cos^2 x + \cos^4 x) \sin x \, dx \] ### Step 3: Split the integral We can split the integral into three parts: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx - 2 \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin x \, dx \] ### Step 4: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = -\cos x \bigg|_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] ### Step 5: Evaluate the second integral For the second integral, we use the substitution \( t = \cos x \), hence \( dt = -\sin x \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) which corresponds to \( t = 1 \) to \( t = 0 \): \[ \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin x \, dx = \int_{1}^{0} t^2 (-dt) = \int_{0}^{1} t^2 \, dt = \frac{t^3}{3} \bigg|_{0}^{1} = \frac{1}{3} \] Thus, \[ -2 \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin x \, dx = -2 \cdot \frac{1}{3} = -\frac{2}{3} \] ### Step 6: Evaluate the third integral For the third integral, we again use the substitution \( t = \cos x \): \[ \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin x \, dx = \int_{1}^{0} t^4 (-dt) = \int_{0}^{1} t^4 \, dt = \frac{t^5}{5} \bigg|_{0}^{1} = \frac{1}{5} \] ### Step 7: Combine all parts Now we can combine all the parts: \[ \int_{0}^{\frac{\pi}{2}} \sin^5 x \, dx = 1 - \frac{2}{3} + \frac{1}{5} \] To combine these fractions, we find a common denominator, which is 15: \[ = \frac{15}{15} - \frac{10}{15} + \frac{3}{15} = \frac{15 - 10 + 3}{15} = \frac{8}{15} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sin^5 x \, dx = \frac{8}{15} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

(i) int_(0)^(pi//2)(sin^(7)x)/((sin^(7)x+cos^(7)x))dx=(pi)/(4) (ii) int_(0)^(pi//2)(sin^(5)xdx)/((sin^(5)x+cos^(5)x))dx=(pi)/(4)

int_(0)^(pi//2)x sin x dx=

int_(0)^(pi)x sin^(2)x dx=

int_(0)^(pi) x sin^(2) x dx

Evaluate the following : int_(0)^(pi//2)x sin x dx

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^(pi/2)(sin^(2)x*cos x)dx=