Home
Class 12
MATHS
int(0)^(pi/2)sin^(2)x cos^(4)x dx=...

`int_(0)^(pi/2)sin^(2)x cos^(4)x dx=`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`(pi)/(8)`

D

`(pi)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^4 x \, dx \), we can use a property of definite integrals and some trigonometric identities. Let's go through the solution step by step. ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^4 x \, dx \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx \] In our case, \( A = \frac{\pi}{2} \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^2\left(\frac{\pi}{2} - x\right) \cos^4\left(\frac{\pi}{2} - x\right) \, dx \] Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin^4 x \, dx \] ### Step 3: Add the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^4 x \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \cos^2 x \sin^4 x \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \sin^2 x \cos^4 x + \cos^2 x \sin^4 x \right) \, dx \] ### Step 4: Simplify the integrand We can factor the integrand: \[ \sin^2 x \cos^4 x + \cos^2 x \sin^4 x = \sin^2 x \cos^2 x (\cos^2 x + \sin^2 x) = \sin^2 x \cos^2 x \] since \( \cos^2 x + \sin^2 x = 1 \). Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx \] ### Step 5: Use the identity for \( \sin^2 x \cos^2 x \) We can use the identity \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{1}{4} \sin^2(2x) \, dx \] This simplifies to: \[ 2I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^2(2x) \, dx \] ### Step 6: Evaluate the integral The integral \( \int \sin^2(kx) \, dx \) can be evaluated using the formula: \[ \int \sin^2(kx) \, dx = \frac{x}{2} - \frac{\sin(2kx)}{4k} + C \] For our case with \( k = 2 \): \[ \int \sin^2(2x) \, dx = \frac{x}{2} - \frac{\sin(4x)}{8} + C \] Evaluating from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_{0}^{\frac{\pi}{2}} \sin^2(2x) \, dx = \left[ \frac{x}{2} - \frac{\sin(4x)}{8} \right]_{0}^{\frac{\pi}{2}} = \left[ \frac{\pi/4} - 0 \right] - \left[ 0 - 0 \right] = \frac{\pi}{4} \] ### Step 7: Substitute back to find \( I \) Now substituting back: \[ 2I = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16} \] Thus, \[ I = \frac{\pi}{32} \] ### Final Answer The value of the integral is: \[ I = \frac{\pi}{32} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi)x*sin x*cos^(4)x*dx

int_(0)^(pi)(cos^(4)x-sin^(4)x)dx=