Home
Class 12
MATHS
int(0)^(pi//2)sin^(6)x cos^(2)x dx=...

`int_(0)^(pi//2)sin^(6)x cos^(2)x dx=`

A

`(5)/(256)`

B

`(9pi)/(16)`

C

`(5pi)/(256)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^6 x \cos^2 x \, dx \), we will use the formula derived from Wallis's theorem for integrals of the form \( \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx \). ### Step-by-Step Solution: 1. **Identify m and n**: In our case, we have \( m = 6 \) and \( n = 2 \). 2. **Check the conditions for Wallis's theorem**: According to Wallis's theorem, if \( m \) is even and \( n \) is even, we can use the formula: \[ \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx = \frac{(m-1)!!(n-1)!!}{(m+n)!!} \cdot \frac{\pi}{2} \] Here, \( !! \) denotes the double factorial. 3. **Calculate the double factorials**: - For \( m = 6 \): \[ (m-1)!! = 5!! = 5 \times 3 \times 1 = 15 \] - For \( n = 2 \): \[ (n-1)!! = 1!! = 1 \] - For \( m+n = 8 \): \[ (m+n)!! = 8!! = 8 \times 6 \times 4 \times 2 = 384 \] 4. **Substitute into the formula**: Now substituting the values into the formula: \[ I = \frac{(m-1)!!(n-1)!!}{(m+n)!!} \cdot \frac{\pi}{2} = \frac{15 \cdot 1}{384} \cdot \frac{\pi}{2} \] 5. **Simplify the expression**: \[ I = \frac{15 \pi}{768} \] 6. **Final answer**: Thus, the value of the integral is: \[ I = \frac{15 \pi}{768} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sin^(6)x cos^(2)xdx

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is