Home
Class 12
MATHS
int(0)^(pi//2)sin^(4)xcos^(5)x dx=...

`int_(0)^(pi//2)sin^(4)xcos^(5)x dx=`

A

`(8)/(315)`

B

`(315)/(8)`

C

`(256)/(5)`

D

`(225)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^5 x \, dx \), we will follow a systematic approach. ### Step-by-step Solution: 1. **Rewrite the integral**: We can express \( \cos^5 x \) as \( \cos^4 x \cdot \cos x \). Thus, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^4 x \cos x \, dx \] 2. **Use the identity for \( \cos^4 x \)**: We know that \( \cos^4 x = (\cos^2 x)^2 = (1 - \sin^2 x)^2 \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^4 x (1 - \sin^2 x)^2 \cos x \, dx \] 3. **Expand the integrand**: Expanding \( (1 - \sin^2 x)^2 \) gives: \[ (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^4 x (1 - 2\sin^2 x + \sin^4 x) \cos x \, dx \] This can be split into three separate integrals: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos x \, dx - 2 \int_{0}^{\frac{\pi}{2}} \sin^6 x \cos x \, dx + \int_{0}^{\frac{\pi}{2}} \sin^8 x \cos x \, dx \] 4. **Substitution**: Let \( t = \sin x \). Then, \( dt = \cos x \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) which corresponds to \( t = 0 \) to \( t = 1 \). The integral becomes: \[ I = \int_{0}^{1} t^4 \, dt - 2 \int_{0}^{1} t^6 \, dt + \int_{0}^{1} t^8 \, dt \] 5. **Evaluate each integral**: Using the formula \( \int t^n \, dt = \frac{t^{n+1}}{n+1} \): - \( \int_{0}^{1} t^4 \, dt = \frac{1^5}{5} = \frac{1}{5} \) - \( \int_{0}^{1} t^6 \, dt = \frac{1^7}{7} = \frac{1}{7} \) - \( \int_{0}^{1} t^8 \, dt = \frac{1^9}{9} = \frac{1}{9} \) 6. **Combine the results**: Substituting back into the expression for \( I \): \[ I = \frac{1}{5} - 2 \cdot \frac{1}{7} + \frac{1}{9} \] Finding a common denominator (which is 315): \[ I = \frac{63}{315} - \frac{90}{315} + \frac{35}{315} = \frac{63 - 90 + 35}{315} = \frac{8}{315} \] ### Final Answer: Thus, the value of the integral is: \[ I = \frac{8}{315} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^(-pi//2)sin^(5)xcos^(4)xdx

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

iint_(0)^(pi)sin^(4)xcos^(6)x dx is equal to

int_(0)^(pi)sin^(2)xcos^(3)xdx=0

int_(0)^(pi//2)sin^(5)x dx=

int_(0)^( pi/2)sin^2xcos xdx

int_(0)^(pi//2) sin ^(4) x dx