Home
Class 12
MATHS
int(0)^(pi//2)sin^(3)x cos^(4)x dx=...

`int_(0)^(pi//2)sin^(3)x cos^(4)x dx=`

A

`(2)/(35)`

B

`(35)/(2)`

C

`(35pi)/(2)`

D

`(2pi)/(35)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^3 x \cos^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \(\sin^3 x\) as \(\sin x \cdot \sin^2 x\). Thus, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \sin x \cdot \sin^2 x \cdot \cos^4 x \, dx \] ### Step 2: Substitute \(\sin^2 x\) Using the identity \(\sin^2 x = 1 - \cos^2 x\), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \sin x \cdot (1 - \cos^2 x) \cdot \cos^4 x \, dx \] This expands to: \[ I = \int_{0}^{\frac{\pi}{2}} \sin x \cdot \cos^4 x \, dx - \int_{0}^{\frac{\pi}{2}} \sin x \cdot \cos^6 x \, dx \] ### Step 3: Change of Variables For both integrals, we can use the substitution \( t = \cos x \). Then, \( dt = -\sin x \, dx \). The limits change as follows: - When \( x = 0 \), \( t = 1 \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, we have: \[ I = -\int_{1}^{0} t^4 (-dt) - \int_{1}^{0} t^6 (-dt) \] This simplifies to: \[ I = \int_{0}^{1} t^4 \, dt - \int_{0}^{1} t^6 \, dt \] ### Step 4: Evaluate the Integrals Now we can evaluate each integral: 1. For \(\int_{0}^{1} t^4 \, dt\): \[ \int t^4 \, dt = \frac{t^5}{5} \Big|_{0}^{1} = \frac{1^5}{5} - \frac{0^5}{5} = \frac{1}{5} \] 2. For \(\int_{0}^{1} t^6 \, dt\): \[ \int t^6 \, dt = \frac{t^7}{7} \Big|_{0}^{1} = \frac{1^7}{7} - \frac{0^7}{7} = \frac{1}{7} \] ### Step 5: Combine the Results Now substituting back, we get: \[ I = \frac{1}{5} - \frac{1}{7} \] To combine these fractions, we find a common denominator: \[ I = \frac{7}{35} - \frac{5}{35} = \frac{2}{35} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sin^3 x \cos^4 x \, dx = \frac{2}{35} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

Prove that: int_(0)^( pi/2)log(sin^(3)x cos^(4)x)backslash dx=-(7 pi)/(2)log2

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)

What is int_(0)^(pi//2) (sin^(3)x)/(sin^(3)x + cos^(3)x) dx ?

int_(0)^(pi) x sin x cos^(2)x\ dx