Home
Class 12
MATHS
If I(n)=int(0)^(pi//4)tan^(n)x dx, then ...

If `I_(n)=int_(0)^(pi//4)tan^(n)x dx,` then `7(I_(6)+I_(8))=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and find \( 7(I_6 + I_8) \), we will follow these steps: ### Step 1: Express \( I_n \) in terms of \( I_{n-2} \) Using the reduction formula for integrals of \( \tan^n x \): \[ I_n = \frac{n-1}{n} I_{n-2} \] We will first find \( I_6 \) and \( I_8 \). ### Step 2: Calculate \( I_6 \) Using the reduction formula: \[ I_6 = \frac{5}{6} I_4 \] ### Step 3: Calculate \( I_4 \) Using the reduction formula again: \[ I_4 = \frac{3}{4} I_2 \] ### Step 4: Calculate \( I_2 \) Using the reduction formula once more: \[ I_2 = \frac{1}{2} I_0 \] ### Step 5: Calculate \( I_0 \) We know: \[ I_0 = \int_0^{\frac{\pi}{4}} \tan^0 x \, dx = \int_0^{\frac{\pi}{4}} 1 \, dx = \frac{\pi}{4} \] ### Step 6: Substitute back to find \( I_2 \) Now substituting back: \[ I_2 = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8} \] ### Step 7: Substitute to find \( I_4 \) Now substituting \( I_2 \) back: \[ I_4 = \frac{3}{4} \cdot \frac{\pi}{8} = \frac{3\pi}{32} \] ### Step 8: Substitute to find \( I_6 \) Now substituting \( I_4 \) back: \[ I_6 = \frac{5}{6} \cdot \frac{3\pi}{32} = \frac{15\pi}{192} = \frac{5\pi}{64} \] ### Step 9: Calculate \( I_8 \) Using the reduction formula again: \[ I_8 = \frac{7}{8} I_6 = \frac{7}{8} \cdot \frac{5\pi}{64} = \frac{35\pi}{512} \] ### Step 10: Calculate \( 7(I_6 + I_8) \) Now we can calculate: \[ I_6 + I_8 = \frac{5\pi}{64} + \frac{35\pi}{512} \] To add these fractions, we need a common denominator: \[ \frac{5\pi}{64} = \frac{40\pi}{512} \] Thus, \[ I_6 + I_8 = \frac{40\pi}{512} + \frac{35\pi}{512} = \frac{75\pi}{512} \] Finally, calculate \( 7(I_6 + I_8) \): \[ 7(I_6 + I_8) = 7 \cdot \frac{75\pi}{512} = \frac{525\pi}{512} \] ### Final Answer Thus, the final answer is: \[ 7(I_6 + I_8) = \frac{525\pi}{512} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_(n)=int_(0)^(pi/4)tan^(n)xdx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6) ...... are in

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\