Home
Class 12
MATHS
int(0)^(pi//2)(f(sec x))/(f(sec x)+f(cos...

`int_(0)^(pi//2)(f(sec x))/(f(sec x)+f(cosec x))dx=`

A

0

B

`(pi)/(4)`

C

`(pi)/(2)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sec^(5)x)/((sec^(5)x+cosec^(5)x))dx=?

int(sec x)/(1+csc x)dx

int_(0)^((pi)/(2))(sec x3)/(sec x3+csc x3)xx dx

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

(i) int_(0)^(pi//4) e^(tanx) . sec^(2) x dx (ii) int_(0)^(pi//4) (sin (cos 2x))/(" cosec " 2x)dx

int(sec^(8)x)/("cosec x")dx=

int_(0)^((pi)/(2))sec(x-(pi)/(6))sec(x-(pi)/(3))dx=

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

int _(0) ^(pi//2) sqrt((sec x - tan x )/(sec x + tan x )) (cosec x )/(sqrt(1 +2 cosec x ))dx

int(dx)/(sec x+csc x)