Home
Class 12
MATHS
int(1)^(e )(1)/(x sqrt(log x))dx=...

`int_(1)^(e )(1)/(x sqrt(log x))dx=`

A

2

B

`-2`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{e} \frac{1}{x \sqrt{\log x}} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] ### Step 2: Change the limits of integration When \( x = 1 \): \[ t = \log 1 = 0 \] When \( x = e \): \[ t = \log e = 1 \] Thus, the limits change from \( x: 1 \to e \) to \( t: 0 \to 1 \). ### Step 3: Substitute in the integral Now substitute \( x \) and \( dx \) in the integral: \[ \int_{1}^{e} \frac{1}{x \sqrt{\log x}} \, dx = \int_{0}^{1} \frac{1}{e^t \sqrt{t}} \cdot e^t \, dt = \int_{0}^{1} \frac{1}{\sqrt{t}} \, dt \] ### Step 4: Evaluate the integral The integral \( \int_{0}^{1} \frac{1}{\sqrt{t}} \, dt \) can be computed as follows: \[ \int \frac{1}{\sqrt{t}} \, dt = 2\sqrt{t} + C \] Now, we evaluate it from \( 0 \) to \( 1 \): \[ \left[ 2\sqrt{t} \right]_{0}^{1} = 2\sqrt{1} - 2\sqrt{0} = 2 - 0 = 2 \] ### Final Answer Thus, the value of the integral \( \int_{1}^{e} \frac{1}{x \sqrt{\log x}} \, dx \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)(1)/(x sqrt(log x))dx =

int_(1)^(e^(3))(1)/(x sqrt(1+log x))dx=

int_(1)^(e^(3))(1)/(x sqrt(1+log x))dx=

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

The value of int_(1)^(e)(1)/(x)(1+log x)dx is

int_(1)^(e)(dx)/(x(1+log x))

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

int_(1)^(2)(sqrt(log x))/(x)dx

int_(1)^(e)(e^(x))/(x)(1+x log x)dx

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is