Home
Class 12
MATHS
int(1)^(2)(1)/(x sqrt(log x))dx =...

`int_(1)^(2)(1)/(x sqrt(log x))dx =`

A

`sqrt(log 2)`

B

2

C

`2sqrt(log 2)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e )(1)/(x sqrt(log x))dx=

int_(1)^(e^(3))(1)/(x sqrt(1+log x))dx=

int_(1)^(e^(3))(1)/(x sqrt(1+log x))dx=

int_(1)^(2)(sqrt(log x))/(x)dx

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

Integrate : int_(2)^(1)(1)/(x log x)dx

int_(1)^(2) (dx)/(x(1+log x)^(2))

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

int_(1)^(2)((1+log x)^(2))/(x)dx

int_(1)^(2)((1+log x)^(4))/(x)dx