Home
Class 12
MATHS
int(0)^(2a)f(x)dx-int(0)^(a)f(x)dx=...

`int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=`

A

`int_(0)^(a)f(x)dx`

B

`int_(0)^(a)f(2a-x)dx`

C

`int_(0)^(a)f(a-2x)dx`

D

`int_(0)^(a)f(a+2x)dx`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

STATEMENT 1: The value of int_(0)^(2 pi)cos^(99)xdx is 0 STATEMENT 2:int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx, if f(2a-x)=f(x)

Prove the following properties of definite integrals : int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If int_(0)^(a//2)f(x)dx=p," then "int_(0)^(a)f(x)dx is equal to

STATEMENT-1 : int_(0)^((pi)/(2))(xsinxcosx)/(sin^(4)x+cos^(4)x)dx=(pi^(2))/(32) and STATEMENT-2 : int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Property 6: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx