Home
Class 12
MATHS
int(0)^(pi)(cos^(4)x-sin^(4)x)dx=...

`int_(0)^(pi)(cos^(4)x-sin^(4)x)dx=`

A

2

B

`-2`

C

0

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} (\cos^4 x - \sin^4 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the expression We can use the identity \( a^2 - b^2 = (a-b)(a+b) \) to rewrite \( \cos^4 x - \sin^4 x \): \[ \cos^4 x - \sin^4 x = (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) \] Since \( \cos^2 x + \sin^2 x = 1 \), we have: \[ \cos^4 x - \sin^4 x = \cos^2 x - \sin^2 x \] ### Step 2: Substitute into the integral Now we can substitute this back into the integral: \[ I = \int_{0}^{\pi} (\cos^2 x - \sin^2 x) \, dx \] ### Step 3: Use the identity for sine We know that \( \sin^2 x = 1 - \cos^2 x \). Therefore: \[ \cos^2 x - \sin^2 x = \cos^2 x - (1 - \cos^2 x) = 2\cos^2 x - 1 \] This gives us: \[ I = \int_{0}^{\pi} (2\cos^2 x - 1) \, dx \] ### Step 4: Split the integral We can split the integral into two parts: \[ I = 2 \int_{0}^{\pi} \cos^2 x \, dx - \int_{0}^{\pi} 1 \, dx \] ### Step 5: Evaluate the integrals The integral \( \int_{0}^{\pi} 1 \, dx = \pi \). For \( \int_{0}^{\pi} \cos^2 x \, dx \), we can use the identity: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, \[ \int_{0}^{\pi} \cos^2 x \, dx = \int_{0}^{\pi} \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} \left( \int_{0}^{\pi} 1 \, dx + \int_{0}^{\pi} \cos 2x \, dx \right) \] The first part is \( \frac{1}{2} \cdot \pi \). The second part, \( \int_{0}^{\pi} \cos 2x \, dx = 0 \) (since the integral of cosine over a full period is zero). So, \[ \int_{0}^{\pi} \cos^2 x \, dx = \frac{1}{2} \cdot \pi = \frac{\pi}{2} \] ### Step 6: Substitute back into the equation for \( I \) Now substituting back: \[ I = 2 \cdot \frac{\pi}{2} - \pi = \pi - \pi = 0 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(cos^(4)x)/((sin^(4)x+cos^(4)x))dx=(pi)/(4)

int_(0)^( pi)x(sin^(4)x cos^(4)x)dx

int_(0)^( pi/4)(cos x)/(4-sin^(2)x)*dx

int_(0)^( pi/4)(cos x)/(4-sin^(2)x)*dx

int_(0)^( pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^(pi//2)(cos^(1//4)x)/((sin^(1//4)x+cos^(1//4)x))dx=?

Evaluate int_(0)^(pi//2)(xsinxcosx)/(cos^(4)x+sin^(4)x)dx

int_(0)^( pi)x*sin x*cos^(4)x*dx