Home
Class 12
MATHS
If int(0)^(pi//2)sin^(4)x cos^(2)x dx=(p...

If `int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32)`, then `int_(0)^(pi//2)sin^(2)x cos^(4)x dx=`

A

`(pi)/(4)`

B

`(pi)/(8)`

C

`(pi)/(16)`

D

`(pi)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \[ I = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^4 x \, dx. \] We are given that \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx = \frac{\pi}{32}. \] ### Step 1: Use the property of definite integrals We can use the property of definite integrals which states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, let \( a = \frac{\pi}{2} \). Then we can write: \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \sin^4\left(\frac{\pi}{2} - x\right) \cos^2\left(\frac{\pi}{2} - x\right) \, dx. \] ### Step 2: Simplify the integrals Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx. \] ### Step 3: Relate the two integrals Now we have: \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx. \] Let’s denote: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx, \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx. \] From the above, we can conclude that: \[ I_1 = I_2. \] ### Step 4: Find the total integral Now, we can express the total integral: \[ I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx + \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx. \] This can be simplified as: \[ I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin^2 x + \cos^2 x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx. \] ### Step 5: Evaluate the integral Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ I_1 + I_2 = \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx. \] Now, we know: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^2(2x) \, dx = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16}. \] ### Step 6: Solve for \( I \) Since \( I_1 = I_2 \): \[ 2I_1 = \frac{\pi}{16} \implies I_1 = \frac{\pi}{32}. \] Thus, we have: \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^4 x \, dx = \frac{\pi}{32}. \] ### Final Answer Therefore, the value of \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^4 x \, dx = \frac{\pi}{32}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sin^(2)x cos x dx

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi)x*sin x*cos^(4)x*dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi//2) x sin cos x dx=?