Home
Class 12
MATHS
int(0)^(pi//2)(cos x)/(1+sin^(2)x)dx=...

`int_(0)^(pi//2)(cos x)/(1+sin^(2)x)dx=`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \( t = \sin x \). Then, we differentiate both sides: \[ dt = \cos x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\cos x}. \] ### Step 2: Change of Limits When \( x = 0 \), \( t = \sin(0) = 0 \). When \( x = \frac{\pi}{2} \), \( t = \sin\left(\frac{\pi}{2}\right) = 1 \). Thus, the limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) to \( t = 0 \) to \( t = 1 \). ### Step 3: Rewrite the Integral Now, substituting \( t \) into the integral gives: \[ I = \int_{0}^{1} \frac{1}{1 + t^2} \, dt. \] ### Step 4: Integrate The integral \( \int \frac{1}{1 + t^2} \, dt \) is a standard integral that equals \( \tan^{-1}(t) \). Therefore, \[ I = \left[ \tan^{-1}(t) \right]_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0). \] ### Step 5: Evaluate the Limits We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \quad \text{and} \quad \tan^{-1}(0) = 0. \] Thus, \[ I = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] ### Final Answer The value of the integral is \[ \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} \, dx = \frac{\pi}{4}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(1+3sin^2x)dx

int_(0)^(pi//2)(sin x.cos x)/(1+sin^(4)x)dx=

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^((pi)/(2))(cos^(2)x)/(1+3sin^(2)x)*dx

Let u=int_(0)^((pi)/(4))(cos^(2)x)/(1+sin2x)dx,v=int_(0)^((pi)/(8))(1)/((1+tan2x)^(2))dx then the value of (u)/(v) equals