Home
Class 12
MATHS
int(sqrt(2)//3)^(sqrt(3)//3)(1)/(sqrt(4-...

`int_(sqrt(2)//3)^(sqrt(3)//3)(1)/(sqrt(4-9x^(2)))dx=`

A

`(pi)/(36)`

B

`(pi)/(9)`

C

`(pi)/(12)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \frac{1}{\sqrt{4 - 9x^2}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral First, we rewrite the expression under the square root: \[ \sqrt{4 - 9x^2} = \sqrt{4(1 - \frac{9}{4}x^2)} = 2\sqrt{1 - \frac{9}{4}x^2}. \] Thus, the integral becomes: \[ \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \frac{1}{2\sqrt{1 - \frac{9}{4}x^2}} \, dx = \frac{1}{2} \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \frac{1}{\sqrt{1 - \frac{9}{4}x^2}} \, dx. \] ### Step 2: Use a Substitution Let \( a^2 = \frac{4}{9} \) so that \( a = \frac{2}{3} \). We can use the formula for the integral: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + C. \] Thus, we have: \[ \int \frac{1}{\sqrt{1 - \frac{9}{4}x^2}} \, dx = \frac{2}{3} \sin^{-1}\left(\frac{3x}{2}\right) + C. \] ### Step 3: Evaluate the Integral Now we can evaluate the definite integral: \[ \frac{1}{2} \left[ \frac{2}{3} \sin^{-1}\left(\frac{3x}{2}\right) \right]_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} = \frac{1}{3} \left[ \sin^{-1}\left(\frac{3 \cdot \frac{\sqrt{3}}{3}}{2}\right) - \sin^{-1}\left(\frac{3 \cdot \frac{\sqrt{2}}{3}}{2}\right) \right]. \] This simplifies to: \[ \frac{1}{3} \left[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) \right]. \] ### Step 4: Substitute Values We know: \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}, \quad \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}. \] So we substitute these values into our expression: \[ \frac{1}{3} \left[ \frac{\pi}{3} - \frac{\pi}{4} \right]. \] ### Step 5: Simplify the Result Now we need to simplify: \[ \frac{1}{3} \left[ \frac{4\pi}{12} - \frac{3\pi}{12} \right] = \frac{1}{3} \left[ \frac{\pi}{12} \right] = \frac{\pi}{36}. \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \frac{1}{\sqrt{4 - 9x^2}} \, dx = \frac{\pi}{36}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int sqrt(4-9x^(2))dx

int_(0)^(2//3)sqrt(4-9x^(2))dx=

int(dx)/(sqrt(4-9x^(2)))=?

The value of I=int_(-sqrt(3)/2)^(sqrt(3)/2)(dx)/((1-x)sqrt(1-x^(2))) is

int(dx)/(sqrt(1-9x^(2)))

int sqrt(1-9x^(2))dx=?

int(x+3)/(sqrt(9-x^(2)))dx

int(1)/(sqrt(4x^(2)-4x+3))dx=

int(dx)/(sqrt(9x^(2)-4))

int(dx)/(sqrt(4x^(2)+3))