Home
Class 12
MATHS
int(0)^(pi//4)(tan^(4)x + tan^(2)x)dx=...

`int_(0)^(pi//4)(tan^(4)x + tan^(2)x)dx=`

A

1

B

`(1)/(2)`

C

`(1)/(3)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{4}} \left( \tan^4 x + \tan^2 x \right) dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can factor out \( \tan^2 x \) from the integrand: \[ \int_{0}^{\frac{\pi}{4}} \left( \tan^4 x + \tan^2 x \right) dx = \int_{0}^{\frac{\pi}{4}} \tan^2 x \left( \tan^2 x + 1 \right) dx \] Since \( \tan^2 x + 1 = \sec^2 x \), we can rewrite the integral as: \[ \int_{0}^{\frac{\pi}{4}} \tan^2 x \sec^2 x \, dx \] ### Step 2: Substitution Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \). Changing the limits: - When \( x = 0 \), \( t = \tan(0) = 0 \) - When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \) Thus, the integral becomes: \[ \int_{0}^{1} t^2 \, dt \] ### Step 3: Evaluate the Integral Now we can evaluate the integral: \[ \int_{0}^{1} t^2 \, dt = \left[ \frac{t^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \] ### Final Answer Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} \left( \tan^4 x + \tan^2 x \right) dx = \frac{1}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

The value of integral I = int_(0)^(pi//4) (tan^(2)x + 2sin^(2)x) dx is:

int_(0)^(pi//4) tan x dx

int_(0)^(pi//4)e^(x)(1+tan x + tan^(2)x)dx=

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

int _(0) ^(pi//4) tan^(2) x " " dx=

int_(0)^(pi//4)(tan^(3)x)/((1+cos2x))dx

int_(0)^(pi//4)(1-tan x)/(1+tan x)dx =

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx