Home
Class 12
MATHS
int(2)^(3)(1)/(x^(2)-x)dx=...

`int_(2)^(3)(1)/(x^(2)-x)dx=`

A

`log((2)/(3))`

B

`log((4)/(3))`

C

`log((8)/(3))`

D

`-log 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2}^{3} \frac{1}{x^2 - x} \, dx \), we will follow these steps: ### Step 1: Factor the Denominator The first step is to factor the denominator \( x^2 - x \): \[ x^2 - x = x(x - 1) \] Thus, we can rewrite the integral as: \[ \int_{2}^{3} \frac{1}{x(x - 1)} \, dx \] ### Step 2: Partial Fraction Decomposition Next, we will use partial fraction decomposition to express \( \frac{1}{x(x - 1)} \) as a sum of simpler fractions: \[ \frac{1}{x(x - 1)} = \frac{A}{x} + \frac{B}{x - 1} \] Multiplying through by the denominator \( x(x - 1) \) gives: \[ 1 = A(x - 1) + Bx \] Expanding and rearranging: \[ 1 = Ax - A + Bx \] \[ 1 = (A + B)x - A \] From this, we can set up the system of equations: 1. \( A + B = 0 \) 2. \( -A = 1 \) Solving these equations, we find: - From \( -A = 1 \), we have \( A = -1 \). - Substituting \( A \) into \( A + B = 0 \) gives \( -1 + B = 0 \) or \( B = 1 \). Thus, we can rewrite the integral as: \[ \int_{2}^{3} \left( \frac{-1}{x} + \frac{1}{x - 1} \right) \, dx \] ### Step 3: Split the Integral Now we can split the integral into two parts: \[ \int_{2}^{3} \left( \frac{-1}{x} \right) \, dx + \int_{2}^{3} \left( \frac{1}{x - 1} \right) \, dx \] ### Step 4: Evaluate Each Integral Now we evaluate each integral separately. 1. For the first integral: \[ \int \frac{-1}{x} \, dx = -\log |x| \quad \text{(evaluated from 2 to 3)} \] \[ = -[\log 3 - \log 2] = -\log 3 + \log 2 = \log \frac{2}{3} \] 2. For the second integral: \[ \int \frac{1}{x - 1} \, dx = \log |x - 1| \quad \text{(evaluated from 2 to 3)} \] \[ = [\log(3 - 1) - \log(2 - 1)] = \log 2 - \log 1 = \log 2 \quad \text{(since log 1 = 0)} \] ### Step 5: Combine the Results Now we combine the results of both integrals: \[ \int_{2}^{3} \frac{1}{x^2 - x} \, dx = \log \frac{2}{3} + \log 2 = \log \left( \frac{2}{3} \cdot 2 \right) = \log \frac{4}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{2}^{3} \frac{1}{x^2 - x} \, dx = \log \frac{4}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(3)(dx)/(x^(2)-1)

int_(2)^(3)(1)/(x^(2)+5x+6)dx =

int_(0)^(3)(1)/(x^(2)-3x+2)dx

Evaluate int_(2)^(3)(x)/(x^(2)-1)dx

int_(2)^(3)(1)/(2x^(2)+3x-2)dx=

int_(2)^(3)(1)/(x(x^(3)-1))dx=

Evaluate :int_(2)^(3)(x)/(x^(2)+1)dx

int_(2)^(3) x/(x^(2)-1) dx =

int_(-1)^(1)(x^(2)-2x+3)dx

The value of int_(2)^(3)(x+1)/(x^(2)(x-1))dx is