Home
Class 12
MATHS
int(0)^(pi//2)(1)/(1+tan^(3)x)dx=...

`int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=`

A

0

B

1

C

`(pi)/(2)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx, \] we can use a property of definite integrals. This property states that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, we set \( a = \frac{\pi}{2} \). Thus, we can write: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3\left(\frac{\pi}{2} - x\right)} \, dx. \] Using the identity \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot^3 x} \, dx. \] Now, we can express \( \cot^3 x \) in terms of \( \tan x \): \[ \cot^3 x = \frac{1}{\tan^3 x}. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \frac{1}{\tan^3 x}} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 x}{\tan^3 x + 1} \, dx. \] Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx \) (Equation 1) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 x}{\tan^3 x + 1} \, dx \) (Equation 2) Next, we can add these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan^3 x} + \frac{\tan^3 x}{\tan^3 x + 1} \right) \, dx. \] Simplifying the integrand: \[ \frac{1}{1 + \tan^3 x} + \frac{\tan^3 x}{\tan^3 x + 1} = \frac{1 + \tan^3 x}{1 + \tan^3 x} = 1. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] Now, dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx = \frac{\pi}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

int_(0)^((pi)/(2))(1)/(1+tan x)dx

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

Evaluate the following integral: int_0^(pi//2)1/(1+tan^3x)dx

Evaluate the following integral: int_0^(pi//2)1/(1+tan^3x)dx

int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=

The value of int_(0)^( pi/2)(dx)/(1+tan^(3)x)(i)0(ii)1(iii(pi)/(2) (iv) (pi)/(4)