Home
Class 12
MATHS
int(1)^(e )(1)/(6x(log x)^(2)+7x log x +...

`int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=`

A

`log((15)/(2))`

B

`log((6)/(5))`

C

`log((3)/(10))`

D

`(1)/(5)log((8)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{1}^{e} \frac{1}{6x (\log x)^2 + 7x \log x + 2x} \, dx, \] we can follow these steps: ### Step 1: Simplify the Integral We start by factoring out \(x\) from the denominator: \[ \int_{1}^{e} \frac{1}{x(6 (\log x)^2 + 7 \log x + 2)} \, dx. \] ### Step 2: Substitute \(t = \log x\) We can use the substitution \(t = \log x\). Therefore, \(x = e^t\) and \(dx = e^t \, dt\). The limits change as follows: - When \(x = 1\), \(t = \log 1 = 0\). - When \(x = e\), \(t = \log e = 1\). Thus, the integral becomes: \[ \int_{0}^{1} \frac{e^t}{e^t (6t^2 + 7t + 2)} \, dt = \int_{0}^{1} \frac{1}{6t^2 + 7t + 2} \, dt. \] ### Step 3: Partial Fraction Decomposition Next, we need to perform partial fraction decomposition on the integrand: \[ \frac{1}{6t^2 + 7t + 2}. \] We can express this as: \[ \frac{1}{(3t + 2)(2t + 1)} = \frac{A}{3t + 2} + \frac{B}{2t + 1}. \] Multiplying through by the denominator \( (3t + 2)(2t + 1) \) gives: \[ 1 = A(2t + 1) + B(3t + 2). \] ### Step 4: Solve for \(A\) and \(B\) To find \(A\) and \(B\), we can substitute convenient values for \(t\): 1. Let \(t = -\frac{1}{2}\): \[ 1 = A(0) + B(3(-\frac{1}{2}) + 2) \Rightarrow 1 = B(0.5) \Rightarrow B = 2. \] 2. Let \(t = -\frac{2}{3}\): \[ 1 = A(2(-\frac{2}{3}) + 1) + B(0) \Rightarrow 1 = A(-\frac{4}{3} + 1) \Rightarrow 1 = A(-\frac{1}{3}) \Rightarrow A = -3. \] Thus, we have: \[ \frac{1}{6t^2 + 7t + 2} = \frac{-3}{3t + 2} + \frac{2}{2t + 1}. \] ### Step 5: Integrate Each Term Now we can integrate each term separately: \[ \int_{0}^{1} \left( \frac{-3}{3t + 2} + \frac{2}{2t + 1} \right) dt = -3 \int_{0}^{1} \frac{1}{3t + 2} dt + 2 \int_{0}^{1} \frac{1}{2t + 1} dt. \] Calculating these integrals: 1. For \(-3 \int \frac{1}{3t + 2} dt\): \[ -3 \cdot \frac{1}{3} \log |3t + 2| \bigg|_{0}^{1} = -\log(5) + \log(2) = \log\left(\frac{2}{5}\right). \] 2. For \(2 \int \frac{1}{2t + 1} dt\): \[ 2 \cdot \frac{1}{2} \log |2t + 1| \bigg|_{0}^{1} = \log(3) - \log(1) = \log(3). \] ### Step 6: Combine the Results Combining the results from both integrals: \[ \log\left(\frac{2}{5}\right) + \log(3) = \log\left(\frac{6}{5}\right). \] ### Final Answer Thus, the final result of the integral is: \[ \int_{1}^{e} \frac{1}{6x (\log x)^2 + 7x \log x + 2x} \, dx = \log\left(\frac{6}{5}\right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e)(dx)/(x(1+log x))

int_(1)^(e )(1)/(x sqrt(log x))dx=

int_(1)^(2) (dx)/(x(1+log x)^(2))

int(1)/(x(log x)^(2))dx

int(1)/(x(6(log x)^(2)+7log x+2)dx)

int 1/(x(log x)^2)dx

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

int(1)/((x)(6(log x)^(2)+7log x+2))dx

-int_(1)^(e)((log x)^(2))/(x)*dx

"int_(1)^(e)(1+log x)/(x)dx=

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  2. int(0)^(pi)(e^(cos x))/(e^(cos x)+e^(-cos x))dx=

    Text Solution

    |

  3. int(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

    Text Solution

    |

  4. int0^2sqrt((2+x)/(2-x))dx is equal to

    Text Solution

    |

  5. int(pi//6)^(pi//3)(1)/(1+tan x) dx=

    Text Solution

    |

  6. int(log sqrt(pi//2))^(log sqrt(pi))(e^(2x)sec^(2)((1)/(3)e^(2x)))dx is...

    Text Solution

    |

  7. int(-a)^(a)x^(2)(e^(x^(3))-e^(-x^(3)))/(e^(x^(3))+e^(-x^(3)))dx=

    Text Solution

    |

  8. If int(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=4, then (a, b) can have the ...

    Text Solution

    |

  9. If f(a+b-x)=f(x), then int(a)^(b)x f(x)dx=

    Text Solution

    |

  10. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  11. int(-2)^(2)(1)/(1+e^(x^(3)))dx=

    Text Solution

    |

  12. If f(x)+f(2-x)=0, then int(0)^(2)(1)/(1+2^(f(x)))dx=

    Text Solution

    |

  13. If f is an odd function and I=int(-a)^(a)(f(sin x))/(f(cos x)+f (sin^...

    Text Solution

    |

  14. If int(-1)^(4)f(x)dx=4 and int(2)^(4)[3-f(x)]dx=7, then int(2)^(-1)f(x...

    Text Solution

    |

  15. int(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

    Text Solution

    |

  16. int(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

    Text Solution

    |

  17. int(0)^(a)[f(x)+f(a-x)]dx=

    Text Solution

    |

  18. If n is an integer, then int(0)^(pi)(sin 2nx)/(sin x)dx=

    Text Solution

    |

  19. If int(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3), then a =

    Text Solution

    |

  20. If A(x)=int(0)^(x)t^(2) dt, then : A (3) =

    Text Solution

    |