Home
Class 12
MATHS
int(pi//6)^(pi//3)(1)/(1+tan x) dx=...

`int_(pi//6)^(pi//3)(1)/(1+tan x) dx=`

A

`pi`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \tan x} \, dx \), we can use a property of definite integrals. Let's go through the solution step by step. ### Step 1: Define the Integral Let \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \tan x} \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, \( a = \frac{\pi}{6} \) and \( b = \frac{\pi}{3} \). Thus, \[ a + b = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{6} + \frac{2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] So, we can rewrite the integral as: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \tan\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 3: Simplify the Integral Using the identity \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \), we have: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \cot x} \, dx \] Now, we can rewrite \( \frac{1}{1 + \cot x} \): \[ \cot x = \frac{1}{\tan x} \implies 1 + \cot x = 1 + \frac{1}{\tan x} = \frac{\tan x + 1}{\tan x} \] Thus, \[ \frac{1}{1 + \cot x} = \frac{\tan x}{\tan x + 1} \] So we can express our integral as: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\tan x}{\tan x + 1} \, dx \] ### Step 4: Add the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \tan x} \, dx \) (Equation 1) 2. \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\tan x}{\tan x + 1} \, dx \) (Equation 2) Adding these two equations: \[ 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left( \frac{1}{1 + \tan x} + \frac{\tan x}{\tan x + 1} \right) \, dx \] The integrand simplifies as follows: \[ \frac{1}{1 + \tan x} + \frac{\tan x}{\tan x + 1} = \frac{1 + \tan x}{1 + \tan x} = 1 \] Thus, \[ 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx \] ### Step 5: Evaluate the Integral Now, we can evaluate the integral: \[ 2I = \left[ x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{6} \] So, \[ I = \frac{\pi}{12} \] ### Final Answer The value of the integral is: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \tan x} \, dx = \frac{\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

int_(pi//6)^(pi//3)(1)/((1+sqrt(tanx)))dx=(pi)/(12)

Evaluate int_(pi//6)^(pi//3)(dx)/(1+tan^(n)x)

int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. int(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

    Text Solution

    |

  2. int0^2sqrt((2+x)/(2-x))dx is equal to

    Text Solution

    |

  3. int(pi//6)^(pi//3)(1)/(1+tan x) dx=

    Text Solution

    |

  4. int(log sqrt(pi//2))^(log sqrt(pi))(e^(2x)sec^(2)((1)/(3)e^(2x)))dx is...

    Text Solution

    |

  5. int(-a)^(a)x^(2)(e^(x^(3))-e^(-x^(3)))/(e^(x^(3))+e^(-x^(3)))dx=

    Text Solution

    |

  6. If int(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=4, then (a, b) can have the ...

    Text Solution

    |

  7. If f(a+b-x)=f(x), then int(a)^(b)x f(x)dx=

    Text Solution

    |

  8. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  9. int(-2)^(2)(1)/(1+e^(x^(3)))dx=

    Text Solution

    |

  10. If f(x)+f(2-x)=0, then int(0)^(2)(1)/(1+2^(f(x)))dx=

    Text Solution

    |

  11. If f is an odd function and I=int(-a)^(a)(f(sin x))/(f(cos x)+f (sin^...

    Text Solution

    |

  12. If int(-1)^(4)f(x)dx=4 and int(2)^(4)[3-f(x)]dx=7, then int(2)^(-1)f(x...

    Text Solution

    |

  13. int(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

    Text Solution

    |

  14. int(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

    Text Solution

    |

  15. int(0)^(a)[f(x)+f(a-x)]dx=

    Text Solution

    |

  16. If n is an integer, then int(0)^(pi)(sin 2nx)/(sin x)dx=

    Text Solution

    |

  17. If int(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3), then a =

    Text Solution

    |

  18. If A(x)=int(0)^(x)t^(2) dt, then : A (3) =

    Text Solution

    |

  19. Given int(1)^(5)f=3, int(2)^(6)f=4 and int(5)^(6)f=5. If F' = f and F ...

    Text Solution

    |

  20. If the graph of the function y = f(x) passes through the points (1, 2)...

    Text Solution

    |