Home
Class 12
MATHS
int(log sqrt(pi//2))^(log sqrt(pi))(e^(2...

`int_(log sqrt(pi//2))^(log sqrt(pi))(e^(2x)sec^(2)((1)/(3)e^(2x)))dx` is equal to:

A

`sqrt(3)`

B

`(1)/(sqrt(3))`

C

`(3sqrt(3))/(2)`

D

`(1)/(2sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{\log \sqrt{\frac{\pi}{2}}}^{\log \sqrt{\pi}} e^{2x} \sec^2\left(\frac{1}{3} e^{2x}\right) dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \frac{1}{3} e^{2x} \). Then, differentiating both sides gives us: \[ dt = \frac{2}{3} e^{2x} dx \implies e^{2x} dx = \frac{3}{2} dt. \] ### Step 2: Change of Limits Next, we need to change the limits of integration based on our substitution. - For the lower limit \( x = \log \sqrt{\frac{\pi}{2}} \): \[ e^{2x} = e^{2 \log \sqrt{\frac{\pi}{2}}} = \frac{\pi}{2} \implies t = \frac{1}{3} \cdot \frac{\pi}{2} = \frac{\pi}{6}. \] - For the upper limit \( x = \log \sqrt{\pi} \): \[ e^{2x} = e^{2 \log \sqrt{\pi}} = \pi \implies t = \frac{1}{3} \cdot \pi = \frac{\pi}{3}. \] ### Step 3: Rewrite the Integral Now we can rewrite the integral \( I \) in terms of \( t \): \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} e^{2x} \sec^2\left(t\right) \cdot \frac{3}{2} dt. \] Since \( e^{2x} = 3t \) (from our substitution), we can substitute this into the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 3t \sec^2(t) \cdot \frac{3}{2} dt = \frac{9}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} t \sec^2(t) dt. \] ### Step 4: Integrate The integral of \( t \sec^2(t) \) can be solved using integration by parts. Let: - \( u = t \) and \( dv = \sec^2(t) dt \) - Then \( du = dt \) and \( v = \tan(t) \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int t \sec^2(t) dt = t \tan(t) - \int \tan(t) dt. \] The integral of \( \tan(t) \) is \( -\log|\cos(t)| \). Therefore, \[ \int t \sec^2(t) dt = t \tan(t) + \log|\cos(t)| + C. \] ### Step 5: Evaluate the Integral Now we evaluate: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} t \sec^2(t) dt = \left[ t \tan(t) + \log|\cos(t)| \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}. \] Calculating at the limits: 1. At \( t = \frac{\pi}{3} \): \[ \frac{\pi}{3} \tan\left(\frac{\pi}{3}\right) + \log|\cos\left(\frac{\pi}{3}\right)| = \frac{\pi}{3} \cdot \sqrt{3} + \log\left(\frac{1}{2}\right). \] 2. At \( t = \frac{\pi}{6} \): \[ \frac{\pi}{6} \tan\left(\frac{\pi}{6}\right) + \log|\cos\left(\frac{\pi}{6}\right)| = \frac{\pi}{6} \cdot \frac{1}{\sqrt{3}} + \log\left(\frac{\sqrt{3}}{2}\right). \] ### Step 6: Combine and Simplify Now we substitute these values back into the expression for \( I \): \[ I = \frac{9}{2} \left[ \left( \frac{\pi \sqrt{3}}{3} + \log\left(\frac{1}{2}\right) \right) - \left( \frac{\pi}{6\sqrt{3}} + \log\left(\frac{\sqrt{3}}{2}\right) \right) \right]. \] After simplifying, we find: \[ I = \sqrt{3}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\sqrt{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int _(log pi - log 2 ) ^(log pi) (e ^(x))/(1- cos ((2)/(3)e ^(x)))dx is equal to

The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int(e^(log sqrt(x)))/(x)dx

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

The value of int_(ln pi-ln2)^(ln pi)(e^(x))/(1-cos(((2)/(3))e^(x)))dx=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int(e^(log sqrt(x)))/(x)dx=

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. int0^2sqrt((2+x)/(2-x))dx is equal to

    Text Solution

    |

  2. int(pi//6)^(pi//3)(1)/(1+tan x) dx=

    Text Solution

    |

  3. int(log sqrt(pi//2))^(log sqrt(pi))(e^(2x)sec^(2)((1)/(3)e^(2x)))dx is...

    Text Solution

    |

  4. int(-a)^(a)x^(2)(e^(x^(3))-e^(-x^(3)))/(e^(x^(3))+e^(-x^(3)))dx=

    Text Solution

    |

  5. If int(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=4, then (a, b) can have the ...

    Text Solution

    |

  6. If f(a+b-x)=f(x), then int(a)^(b)x f(x)dx=

    Text Solution

    |

  7. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  8. int(-2)^(2)(1)/(1+e^(x^(3)))dx=

    Text Solution

    |

  9. If f(x)+f(2-x)=0, then int(0)^(2)(1)/(1+2^(f(x)))dx=

    Text Solution

    |

  10. If f is an odd function and I=int(-a)^(a)(f(sin x))/(f(cos x)+f (sin^...

    Text Solution

    |

  11. If int(-1)^(4)f(x)dx=4 and int(2)^(4)[3-f(x)]dx=7, then int(2)^(-1)f(x...

    Text Solution

    |

  12. int(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

    Text Solution

    |

  13. int(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

    Text Solution

    |

  14. int(0)^(a)[f(x)+f(a-x)]dx=

    Text Solution

    |

  15. If n is an integer, then int(0)^(pi)(sin 2nx)/(sin x)dx=

    Text Solution

    |

  16. If int(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3), then a =

    Text Solution

    |

  17. If A(x)=int(0)^(x)t^(2) dt, then : A (3) =

    Text Solution

    |

  18. Given int(1)^(5)f=3, int(2)^(6)f=4 and int(5)^(6)f=5. If F' = f and F ...

    Text Solution

    |

  19. If the graph of the function y = f(x) passes through the points (1, 2)...

    Text Solution

    |

  20. int(0)^(1)[(d)/(dx)(sqrt(1+x^(3)))]dx=

    Text Solution

    |