Home
Class 12
MATHS
int(-2)^(2)(1)/(1+e^(x^(3)))dx=...

`int_(-2)^(2)(1)/(1+e^(x^(3)))dx=`

A

`(e^(2))/(1+e^(8))`

B

4

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(1)^(2)(e^(1//x))/(x^(2))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)(e^(x))/((2+e^(x)))dx

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

The integral I=int_(e)^(e+1)(1+x^(2))/(1+x^(3))dx satisfies

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=