Home
Class 12
MATHS
If f is an odd function and I=int(-a)^(...

If f is an odd function and `I=int_(-a)^(a)(f(sin x))/(f(cos x)+f (sin^(2)x))dx`, then

A

I can't be evaluated

B

I = 0

C

`I=(pi)/(2)`

D

I = 1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If f is an odd function,then evaluate I=int_(-a)^(a)(f(sin x))/(f(cos x)+f(sin^(2)x))dx

If f is an odd function, show that: int_-a^a f(sinx)/(f(cosx)+f(sin^2x))dx=0

If f(x) is an odd function, then the value of int_(-a)^(a)(f(sin x)/(f(cos x)+f(sin ^(2)x))) dx is equal to

int_(f(x)sin xdx)=-f(x)cos x+int3x^(2)cos xdx then f(x)=

Let f be an odd function then int_(-1)^(1) (|x| +f(x) cos x) dx is equal to

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

Property 9: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=0 if f(x) is odd and 2int_(0)^(a)f(x)dx if f(x) is even

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

STATEMENT 1:int_(a)^(x)f(t)dt is an even function if f(x) is an odd function.STATEMENT 2:int_(a)^(x)f(t)dx is an odd function if f(x) is an even function.