Home
Class 12
MATHS
If A(x)=int(0)^(x)t^(2) dt, then : A (3)...

If `A(x)=int_(0)^(x)t^(2)` dt, then : A (3) =

A

27

B

3

C

9

D

81

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( A(x) \) defined as: \[ A(x) = \int_{0}^{x} t^2 \, dt \] We want to find \( A(3) \). ### Step 1: Evaluate the integral To evaluate \( A(x) \), we first compute the integral: \[ A(x) = \int_{0}^{x} t^2 \, dt \] The integral of \( t^2 \) is: \[ \int t^2 \, dt = \frac{t^3}{3} + C \] ### Step 2: Apply the limits of integration Now we apply the limits from 0 to \( x \): \[ A(x) = \left[ \frac{t^3}{3} \right]_{0}^{x} = \frac{x^3}{3} - \frac{0^3}{3} \] This simplifies to: \[ A(x) = \frac{x^3}{3} \] ### Step 3: Substitute \( x = 3 \) Now, we substitute \( x = 3 \) into the expression for \( A(x) \): \[ A(3) = \frac{3^3}{3} \] Calculating \( 3^3 \): \[ 3^3 = 27 \] Thus, \[ A(3) = \frac{27}{3} = 9 \] ### Final Answer Therefore, the value of \( A(3) \) is: \[ \boxed{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)tf(t)dt+2, then

If f(x)=int_(0)^(2)te^(-t)dt then

Let f(x)=int_(0)^(1)|x-t|dt, then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

The difference between the greateset ahnd least vlaue of the function f(x)=int_(0)^(x) (6t^2-24)" dt on " [1,3] " dt on " [1,3] is

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

if f(x) = int_(0)^(x) (t^2+2t+2) dt where x in [2,4] then

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. If n is an integer, then int(0)^(pi)(sin 2nx)/(sin x)dx=

    Text Solution

    |

  2. If int(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3), then a =

    Text Solution

    |

  3. If A(x)=int(0)^(x)t^(2) dt, then : A (3) =

    Text Solution

    |

  4. Given int(1)^(5)f=3, int(2)^(6)f=4 and int(5)^(6)f=5. If F' = f and F ...

    Text Solution

    |

  5. If the graph of the function y = f(x) passes through the points (1, 2)...

    Text Solution

    |

  6. int(0)^(1)[(d)/(dx)(sqrt(1+x^(3)))]dx=

    Text Solution

    |

  7. If int(n)^(n+1)f(x)dx = n^(2), where n is an integer, then int(-2)^(4)...

    Text Solution

    |

  8. int(0)^(2pi)e^(sin^(2)nx). tan nx dx =

    Text Solution

    |

  9. int(-a)^(a){f(x)-f(-x)}dx=

    Text Solution

    |

  10. int(-pi//2)^(pi//2) x sin x cos x dx=

    Text Solution

    |

  11. int(-2)^(2)(1)/(1+e^(x^(3)))dx=

    Text Solution

    |

  12. int(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

    Text Solution

    |

  13. int(0)^(pi//2)(sin 2x)/(2+2sin^(2)x+cos^(2)x)dx=

    Text Solution

    |

  14. If int(0)^(1)(x+4)/(x^(2)+5)dx = a log ((6)/(5))+b tan^(-1)((1)/(sqrt(...

    Text Solution

    |

  15. int(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

    Text Solution

    |

  16. If a, b, gt 0, then int(1)^(a)(1)/(x)dx + int(1)^(b)(1)/(x)dx=

    Text Solution

    |

  17. If int(0)^(1)(1)/(e^(x)+e^(-x))dx = tan^(-1)p, then : p =

    Text Solution

    |

  18. int(0)^(pi//2)(sin 8x.log(cot x))/(cos 2x)dx=

    Text Solution

    |

  19. int(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

    Text Solution

    |

  20. int(0)^(pi)(cos x)/(x^(4)+(pi-x)^(4))dx=

    Text Solution

    |